Cargando…

Time-resolved characteristics of laser induced breakdown spectroscopy on non-flat samples by single beam splitting

A single-beam-splitting approach was used to enhance the signal intensity of LIBS under the extreme conditions of laser beam grazing of the surface of non-flat samples. Time-resolved spectra show that the laser-ablated plasma presents a stronger spectral intensity and a slower plasma decay in the sp...

Descripción completa

Detalles Bibliográficos
Autores principales: Lei, Bingying, Xu, Boping, Wang, Jing, Li, Jing, Wang, Yishan, Tang, Jie, Zhao, Wei, Duan, Yixiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9057431/
https://www.ncbi.nlm.nih.gov/pubmed/35515415
http://dx.doi.org/10.1039/d0ra06582j
Descripción
Sumario:A single-beam-splitting approach was used to enhance the signal intensity of LIBS under the extreme conditions of laser beam grazing of the surface of non-flat samples. Time-resolved spectra show that the laser-ablated plasma presents a stronger spectral intensity and a slower plasma decay in the split beam mode because of the higher laser irradiance. The temporal evolutions of signal enhancement factors indicate that the enhancement effect first rises and then drops with delay time and the maximum enhancement factor of Al plasma comes later than that of Cu plasma under the same laser energy. The mechanisms behind it are discussed. It is also found that the electron density exhibits a faster decay with delay time in the split beam mode, mainly due to the faster plasma expansion. And a slower increase of electron density with laser energy is observed in the split beam mode because of the plasma shielding effect.