Cargando…
A sodium alginate-based sustained-release IPN hydrogel and its applications
Interpenetrating polymer network (IPN) hydrogels are crosslinked by two or more polymer networks, providing free volume space in the three-dimensional network structure, and providing conditions for the sustained and controlled release of drugs. The IPN hydrogels based on the natural polymer sodium...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9057473/ https://www.ncbi.nlm.nih.gov/pubmed/35515393 http://dx.doi.org/10.1039/d0ra04316h |
Sumario: | Interpenetrating polymer network (IPN) hydrogels are crosslinked by two or more polymer networks, providing free volume space in the three-dimensional network structure, and providing conditions for the sustained and controlled release of drugs. The IPN hydrogels based on the natural polymer sodium alginate can form a stable porous network structure. Due to its excellent biocompatibility, the loaded drug can be sustained to the maximum extent without affecting its pharmacological effect. Sodium alginate-based IPN hydrogels have broad application prospects in the field of sustained and controlled drug release. This paper begins with an overview of the formation of alginate-based IPN hydrogels; summarizes the types of alginate-based IPN hydrogels; and discusses the pharmaceutical applications of alginate-based IPN hydrogels. We aim to give an overview of the research on IPN hydrogels based on sodium alginate in sustained and controlled drug release systems. |
---|