Cargando…

Mutant ANP induces mitochondrial and ion channel remodeling in a human iPSC–derived atrial fibrillation model

Human induced pluripotent stem cell–derived cardiomyocytes (iPSC-CMs) can model heritable arrhythmias to personalize therapies for individual patients. Although atrial fibrillation (AF) is a leading cause of cardiovascular morbidity and mortality, current platforms to generate iPSC-atrial (a) CMs ar...

Descripción completa

Detalles Bibliográficos
Autores principales: Ly, Olivia T., Chen, Hanna, Brown, Grace E., Hong, Liang, Wang, Xinge, Han, Yong Duk, Pavel, Mahmud Arif, Sridhar, Arvind, Maienschein-Cline, Mark, Chalazan, Brandon, Ong, Sang-Ging, Abdelhady, Khaled, Massad, Malek, Rizkallah, Lona Ernst, Rehman, Jalees, Khetani, Salman R., Darbar, Dawood
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Clinical Investigation 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9057627/
https://www.ncbi.nlm.nih.gov/pubmed/35393944
http://dx.doi.org/10.1172/jci.insight.155640
_version_ 1784697941676523520
author Ly, Olivia T.
Chen, Hanna
Brown, Grace E.
Hong, Liang
Wang, Xinge
Han, Yong Duk
Pavel, Mahmud Arif
Sridhar, Arvind
Maienschein-Cline, Mark
Chalazan, Brandon
Ong, Sang-Ging
Abdelhady, Khaled
Massad, Malek
Rizkallah, Lona Ernst
Rehman, Jalees
Khetani, Salman R.
Darbar, Dawood
author_facet Ly, Olivia T.
Chen, Hanna
Brown, Grace E.
Hong, Liang
Wang, Xinge
Han, Yong Duk
Pavel, Mahmud Arif
Sridhar, Arvind
Maienschein-Cline, Mark
Chalazan, Brandon
Ong, Sang-Ging
Abdelhady, Khaled
Massad, Malek
Rizkallah, Lona Ernst
Rehman, Jalees
Khetani, Salman R.
Darbar, Dawood
author_sort Ly, Olivia T.
collection PubMed
description Human induced pluripotent stem cell–derived cardiomyocytes (iPSC-CMs) can model heritable arrhythmias to personalize therapies for individual patients. Although atrial fibrillation (AF) is a leading cause of cardiovascular morbidity and mortality, current platforms to generate iPSC-atrial (a) CMs are inadequate for modeling AF. We applied a combinatorial engineering approach, which integrated multiple physiological cues, including metabolic conditioning and electrical stimulation, to generate mature iPSC-aCMs. Using the patient’s own atrial tissue as a gold standard benchmark, we assessed the electrophysiological, structural, metabolic, and molecular maturation of iPSC-aCMs. Unbiased transcriptomic analysis and inference from gene regulatory networks identified key gene expression pathways and transcription factors mediating atrial development and maturation. Only mature iPSC-aCMs generated from patients with heritable AF carrying the non-ion channel gene (NPPA) mutation showed enhanced expression and function of a cardiac potassium channel and revealed mitochondrial electron transport chain dysfunction. Collectively, we propose that ion channel remodeling in conjunction with metabolic defects created an electrophysiological substrate for AF. Overall, our electro-metabolic approach generated mature human iPSC-aCMs that unmasked the underlying mechanism of the first non-ion channel gene, NPPA, that causes AF. Our maturation approach will allow for the investigation of the molecular underpinnings of heritable AF and the development of personalized therapies.
format Online
Article
Text
id pubmed-9057627
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Society for Clinical Investigation
record_format MEDLINE/PubMed
spelling pubmed-90576272022-05-04 Mutant ANP induces mitochondrial and ion channel remodeling in a human iPSC–derived atrial fibrillation model Ly, Olivia T. Chen, Hanna Brown, Grace E. Hong, Liang Wang, Xinge Han, Yong Duk Pavel, Mahmud Arif Sridhar, Arvind Maienschein-Cline, Mark Chalazan, Brandon Ong, Sang-Ging Abdelhady, Khaled Massad, Malek Rizkallah, Lona Ernst Rehman, Jalees Khetani, Salman R. Darbar, Dawood JCI Insight Research Article Human induced pluripotent stem cell–derived cardiomyocytes (iPSC-CMs) can model heritable arrhythmias to personalize therapies for individual patients. Although atrial fibrillation (AF) is a leading cause of cardiovascular morbidity and mortality, current platforms to generate iPSC-atrial (a) CMs are inadequate for modeling AF. We applied a combinatorial engineering approach, which integrated multiple physiological cues, including metabolic conditioning and electrical stimulation, to generate mature iPSC-aCMs. Using the patient’s own atrial tissue as a gold standard benchmark, we assessed the electrophysiological, structural, metabolic, and molecular maturation of iPSC-aCMs. Unbiased transcriptomic analysis and inference from gene regulatory networks identified key gene expression pathways and transcription factors mediating atrial development and maturation. Only mature iPSC-aCMs generated from patients with heritable AF carrying the non-ion channel gene (NPPA) mutation showed enhanced expression and function of a cardiac potassium channel and revealed mitochondrial electron transport chain dysfunction. Collectively, we propose that ion channel remodeling in conjunction with metabolic defects created an electrophysiological substrate for AF. Overall, our electro-metabolic approach generated mature human iPSC-aCMs that unmasked the underlying mechanism of the first non-ion channel gene, NPPA, that causes AF. Our maturation approach will allow for the investigation of the molecular underpinnings of heritable AF and the development of personalized therapies. American Society for Clinical Investigation 2022-04-08 /pmc/articles/PMC9057627/ /pubmed/35393944 http://dx.doi.org/10.1172/jci.insight.155640 Text en © 2022 Ly et al. https://creativecommons.org/licenses/by/4.0/This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Research Article
Ly, Olivia T.
Chen, Hanna
Brown, Grace E.
Hong, Liang
Wang, Xinge
Han, Yong Duk
Pavel, Mahmud Arif
Sridhar, Arvind
Maienschein-Cline, Mark
Chalazan, Brandon
Ong, Sang-Ging
Abdelhady, Khaled
Massad, Malek
Rizkallah, Lona Ernst
Rehman, Jalees
Khetani, Salman R.
Darbar, Dawood
Mutant ANP induces mitochondrial and ion channel remodeling in a human iPSC–derived atrial fibrillation model
title Mutant ANP induces mitochondrial and ion channel remodeling in a human iPSC–derived atrial fibrillation model
title_full Mutant ANP induces mitochondrial and ion channel remodeling in a human iPSC–derived atrial fibrillation model
title_fullStr Mutant ANP induces mitochondrial and ion channel remodeling in a human iPSC–derived atrial fibrillation model
title_full_unstemmed Mutant ANP induces mitochondrial and ion channel remodeling in a human iPSC–derived atrial fibrillation model
title_short Mutant ANP induces mitochondrial and ion channel remodeling in a human iPSC–derived atrial fibrillation model
title_sort mutant anp induces mitochondrial and ion channel remodeling in a human ipsc–derived atrial fibrillation model
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9057627/
https://www.ncbi.nlm.nih.gov/pubmed/35393944
http://dx.doi.org/10.1172/jci.insight.155640
work_keys_str_mv AT lyoliviat mutantanpinducesmitochondrialandionchannelremodelinginahumanipscderivedatrialfibrillationmodel
AT chenhanna mutantanpinducesmitochondrialandionchannelremodelinginahumanipscderivedatrialfibrillationmodel
AT browngracee mutantanpinducesmitochondrialandionchannelremodelinginahumanipscderivedatrialfibrillationmodel
AT hongliang mutantanpinducesmitochondrialandionchannelremodelinginahumanipscderivedatrialfibrillationmodel
AT wangxinge mutantanpinducesmitochondrialandionchannelremodelinginahumanipscderivedatrialfibrillationmodel
AT hanyongduk mutantanpinducesmitochondrialandionchannelremodelinginahumanipscderivedatrialfibrillationmodel
AT pavelmahmudarif mutantanpinducesmitochondrialandionchannelremodelinginahumanipscderivedatrialfibrillationmodel
AT sridhararvind mutantanpinducesmitochondrialandionchannelremodelinginahumanipscderivedatrialfibrillationmodel
AT maienscheinclinemark mutantanpinducesmitochondrialandionchannelremodelinginahumanipscderivedatrialfibrillationmodel
AT chalazanbrandon mutantanpinducesmitochondrialandionchannelremodelinginahumanipscderivedatrialfibrillationmodel
AT ongsangging mutantanpinducesmitochondrialandionchannelremodelinginahumanipscderivedatrialfibrillationmodel
AT abdelhadykhaled mutantanpinducesmitochondrialandionchannelremodelinginahumanipscderivedatrialfibrillationmodel
AT massadmalek mutantanpinducesmitochondrialandionchannelremodelinginahumanipscderivedatrialfibrillationmodel
AT rizkallahlonaernst mutantanpinducesmitochondrialandionchannelremodelinginahumanipscderivedatrialfibrillationmodel
AT rehmanjalees mutantanpinducesmitochondrialandionchannelremodelinginahumanipscderivedatrialfibrillationmodel
AT khetanisalmanr mutantanpinducesmitochondrialandionchannelremodelinginahumanipscderivedatrialfibrillationmodel
AT darbardawood mutantanpinducesmitochondrialandionchannelremodelinginahumanipscderivedatrialfibrillationmodel