Cargando…

Optimization of machine learning method combined with brain-computer interface rehabilitation system

[Purpose] Stroke patients are unable to move on their own and must be rehabilitated to allow the nervous system to trigger and restore its function. Traditional practice is to use electrode caps to extract brain wave features and combine them with assistive devices. However, there are problems that...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Chi-Hung, Tsai, Kuo-Yu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Society of Physical Therapy Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9057683/
https://www.ncbi.nlm.nih.gov/pubmed/35527849
http://dx.doi.org/10.1589/jpts.34.379
Descripción
Sumario:[Purpose] Stroke patients are unable to move on their own and must be rehabilitated to allow the nervous system to trigger and restore its function. Traditional practice is to use electrode caps to extract brain wave features and combine them with assistive devices. However, there are problems that the electrode cap is not easy to wear, and the potential recognition is not good, and different extraction methods will affect the accuracy of the Brain-Computer Interfaces (BCI), which still has room for improvement. [Participants and Methods] The brainwave headphones used in this experiment do not must a conductive gel to get a good EEG for neural induction and drive the upper limb rehabilitation robot. Next, 8 stroke patients and 200 normal participants were invited for a 4-week rehabilitation training. The effectiveness of the training was determined using Fast Fourier Transform (FFT), Magnitude squared coherence (MSC) feature extraction methods, and five machine learning techniques that induced flicker frequencies. [Results] The results show that the optimal steady-state visual evoked flicker frequency is 6 Hz, and the identification rate of FFT is about 5.2% higher than that of the MSC method. Using an optimized model for different feature extraction methods can improve the recognition rate by 1.3%–9.1%. [Conclusion] The images based on Fugl-Meyer Assessment (FMA), Modified Ashworth Scale (MAS) index improvement, and functional Magnetic Resonance Imaging (fMRI) show that the sensory region of brain movement has become a concentrated activation phenomenon. Besides strengthening the feature extraction method also lets the elbow has an obvious recovery effect.