Cargando…
Photocatalytic activity and antibacterial properties of linen fabric using reduced graphene oxide/silver nanocomposite
Silver nanoparticles were in situ prepared on the surface of linen fabric coated by graphene oxide (GO). In the meantime, the reduction of silver nitrate on the GO-coated fabric led to the synthesis of reduced graphene oxide on the fabric. Two kinds of substrate (cotton and linen) were used. Both RG...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9057768/ https://www.ncbi.nlm.nih.gov/pubmed/35516560 http://dx.doi.org/10.1039/d0ra07544b |
_version_ | 1784697975194255360 |
---|---|
author | Farouk, A. Saeed, S. El-Sayed Sharaf, S. Abd El-Hady, M. M. |
author_facet | Farouk, A. Saeed, S. El-Sayed Sharaf, S. Abd El-Hady, M. M. |
author_sort | Farouk, A. |
collection | PubMed |
description | Silver nanoparticles were in situ prepared on the surface of linen fabric coated by graphene oxide (GO). In the meantime, the reduction of silver nitrate on the GO-coated fabric led to the synthesis of reduced graphene oxide on the fabric. Two kinds of substrate (cotton and linen) were used. Both RGO/Ag and Ag/GO nanocomposites were added on cotton and linen fabrics through a conventional “pad–dry–cure” method. The chemistry and morphology of the coated surfaces were extensively characterized using Fourier-transformed infrared spectroscopy, energy-dispersive X-ray spectroscopy, and scanning electron microscopy. Resistivity measurements were used for assessing the conductivity. The UV protection properties and the photocatalytic activity of the coated fabrics against methylene blue dye were also investigated. The antibacterial activity was studied against Gram-positive S. aureus and B. subtilis and Gram-negative bacterial strains E. coli and P. aeruginosa by determining the zone of inhibition using the agar diffusion method. Methicillin-resistant Staphylococcus aureus (MRSA) has been responsible for many serious hospital infections worldwide. The fabrics showed superior antibacterial activity and successfully hindered the growth of pathogenic bacterial strains. This outcome suggested that both the RGO/Ag and Ag/GO nanocomposites-coated fabrics could be potentially applied in biomaterials and biomedical fields. |
format | Online Article Text |
id | pubmed-9057768 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90577682022-05-04 Photocatalytic activity and antibacterial properties of linen fabric using reduced graphene oxide/silver nanocomposite Farouk, A. Saeed, S. El-Sayed Sharaf, S. Abd El-Hady, M. M. RSC Adv Chemistry Silver nanoparticles were in situ prepared on the surface of linen fabric coated by graphene oxide (GO). In the meantime, the reduction of silver nitrate on the GO-coated fabric led to the synthesis of reduced graphene oxide on the fabric. Two kinds of substrate (cotton and linen) were used. Both RGO/Ag and Ag/GO nanocomposites were added on cotton and linen fabrics through a conventional “pad–dry–cure” method. The chemistry and morphology of the coated surfaces were extensively characterized using Fourier-transformed infrared spectroscopy, energy-dispersive X-ray spectroscopy, and scanning electron microscopy. Resistivity measurements were used for assessing the conductivity. The UV protection properties and the photocatalytic activity of the coated fabrics against methylene blue dye were also investigated. The antibacterial activity was studied against Gram-positive S. aureus and B. subtilis and Gram-negative bacterial strains E. coli and P. aeruginosa by determining the zone of inhibition using the agar diffusion method. Methicillin-resistant Staphylococcus aureus (MRSA) has been responsible for many serious hospital infections worldwide. The fabrics showed superior antibacterial activity and successfully hindered the growth of pathogenic bacterial strains. This outcome suggested that both the RGO/Ag and Ag/GO nanocomposites-coated fabrics could be potentially applied in biomaterials and biomedical fields. The Royal Society of Chemistry 2020-11-13 /pmc/articles/PMC9057768/ /pubmed/35516560 http://dx.doi.org/10.1039/d0ra07544b Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Farouk, A. Saeed, S. El-Sayed Sharaf, S. Abd El-Hady, M. M. Photocatalytic activity and antibacterial properties of linen fabric using reduced graphene oxide/silver nanocomposite |
title | Photocatalytic activity and antibacterial properties of linen fabric using reduced graphene oxide/silver nanocomposite |
title_full | Photocatalytic activity and antibacterial properties of linen fabric using reduced graphene oxide/silver nanocomposite |
title_fullStr | Photocatalytic activity and antibacterial properties of linen fabric using reduced graphene oxide/silver nanocomposite |
title_full_unstemmed | Photocatalytic activity and antibacterial properties of linen fabric using reduced graphene oxide/silver nanocomposite |
title_short | Photocatalytic activity and antibacterial properties of linen fabric using reduced graphene oxide/silver nanocomposite |
title_sort | photocatalytic activity and antibacterial properties of linen fabric using reduced graphene oxide/silver nanocomposite |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9057768/ https://www.ncbi.nlm.nih.gov/pubmed/35516560 http://dx.doi.org/10.1039/d0ra07544b |
work_keys_str_mv | AT farouka photocatalyticactivityandantibacterialpropertiesoflinenfabricusingreducedgrapheneoxidesilvernanocomposite AT saeedselsayed photocatalyticactivityandantibacterialpropertiesoflinenfabricusingreducedgrapheneoxidesilvernanocomposite AT sharafs photocatalyticactivityandantibacterialpropertiesoflinenfabricusingreducedgrapheneoxidesilvernanocomposite AT abdelhadymm photocatalyticactivityandantibacterialpropertiesoflinenfabricusingreducedgrapheneoxidesilvernanocomposite |