Cargando…

The influence mechanism of nano-alumina content in semi-solid ceramic precursor fluid on the forming performance via a light-cured 3D printing method

The use of three-dimensional (3D) printing technology to form ceramic materials can greatly reduce the technical difficulty and cost of preparing special-shaped ceramic parts. In this work, the formation of the 3D structure of ceramic products was achieved through light-curing 3D printing technology...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Kepeng, Xu, Sanqiang, Li, Bailu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9057787/
https://www.ncbi.nlm.nih.gov/pubmed/35516587
http://dx.doi.org/10.1039/d0ra09121a
_version_ 1784697980264120320
author Yang, Kepeng
Xu, Sanqiang
Li, Bailu
author_facet Yang, Kepeng
Xu, Sanqiang
Li, Bailu
author_sort Yang, Kepeng
collection PubMed
description The use of three-dimensional (3D) printing technology to form ceramic materials can greatly reduce the technical difficulty and cost of preparing special-shaped ceramic parts. In this work, the formation of the 3D structure of ceramic products was achieved through light-curing 3D printing technology. The semi-solid ceramic precursor fluid prepared from nano alumina particles (Al(2)O(3)), photocurable polyurethane acrylate (PUA) and isobornyl methacrylate (IBOMA) resin was used to realize ceramic fluid with self-made light-curing 3D printing equipment. The solidification and forming of the ceramic material was achieved through secondary high temperature sintering. In order to reveal the influence mechanism of nano-alumina content in a ceramic slurry on the forming process and performance of light-curing 3D printing, the composition, micro morphology and mechanical properties of 3D printing ceramic samples under different preparation conditions were investigated. The research results show that the relationship of the ratio of alumina to the forming performance was not a monotonic function in the mathematical sense. When the mass ratio of the resin system and alumina was 1 : 2.50, the performance of the formed sample was the best. At this time, the Vickers strength of the sintered ceramic part was 79 GPa, the bending strength was 340 MPa, and the fracture toughness was 2.90 MPa m(−2). This work laid a theoretical and practical foundation for the realization of high-quality, low-cost, and rapid ceramic manufacturing technology in the future.
format Online
Article
Text
id pubmed-9057787
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-90577872022-05-04 The influence mechanism of nano-alumina content in semi-solid ceramic precursor fluid on the forming performance via a light-cured 3D printing method Yang, Kepeng Xu, Sanqiang Li, Bailu RSC Adv Chemistry The use of three-dimensional (3D) printing technology to form ceramic materials can greatly reduce the technical difficulty and cost of preparing special-shaped ceramic parts. In this work, the formation of the 3D structure of ceramic products was achieved through light-curing 3D printing technology. The semi-solid ceramic precursor fluid prepared from nano alumina particles (Al(2)O(3)), photocurable polyurethane acrylate (PUA) and isobornyl methacrylate (IBOMA) resin was used to realize ceramic fluid with self-made light-curing 3D printing equipment. The solidification and forming of the ceramic material was achieved through secondary high temperature sintering. In order to reveal the influence mechanism of nano-alumina content in a ceramic slurry on the forming process and performance of light-curing 3D printing, the composition, micro morphology and mechanical properties of 3D printing ceramic samples under different preparation conditions were investigated. The research results show that the relationship of the ratio of alumina to the forming performance was not a monotonic function in the mathematical sense. When the mass ratio of the resin system and alumina was 1 : 2.50, the performance of the formed sample was the best. At this time, the Vickers strength of the sintered ceramic part was 79 GPa, the bending strength was 340 MPa, and the fracture toughness was 2.90 MPa m(−2). This work laid a theoretical and practical foundation for the realization of high-quality, low-cost, and rapid ceramic manufacturing technology in the future. The Royal Society of Chemistry 2020-11-13 /pmc/articles/PMC9057787/ /pubmed/35516587 http://dx.doi.org/10.1039/d0ra09121a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/
spellingShingle Chemistry
Yang, Kepeng
Xu, Sanqiang
Li, Bailu
The influence mechanism of nano-alumina content in semi-solid ceramic precursor fluid on the forming performance via a light-cured 3D printing method
title The influence mechanism of nano-alumina content in semi-solid ceramic precursor fluid on the forming performance via a light-cured 3D printing method
title_full The influence mechanism of nano-alumina content in semi-solid ceramic precursor fluid on the forming performance via a light-cured 3D printing method
title_fullStr The influence mechanism of nano-alumina content in semi-solid ceramic precursor fluid on the forming performance via a light-cured 3D printing method
title_full_unstemmed The influence mechanism of nano-alumina content in semi-solid ceramic precursor fluid on the forming performance via a light-cured 3D printing method
title_short The influence mechanism of nano-alumina content in semi-solid ceramic precursor fluid on the forming performance via a light-cured 3D printing method
title_sort influence mechanism of nano-alumina content in semi-solid ceramic precursor fluid on the forming performance via a light-cured 3d printing method
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9057787/
https://www.ncbi.nlm.nih.gov/pubmed/35516587
http://dx.doi.org/10.1039/d0ra09121a
work_keys_str_mv AT yangkepeng theinfluencemechanismofnanoaluminacontentinsemisolidceramicprecursorfluidontheformingperformanceviaalightcured3dprintingmethod
AT xusanqiang theinfluencemechanismofnanoaluminacontentinsemisolidceramicprecursorfluidontheformingperformanceviaalightcured3dprintingmethod
AT libailu theinfluencemechanismofnanoaluminacontentinsemisolidceramicprecursorfluidontheformingperformanceviaalightcured3dprintingmethod
AT yangkepeng influencemechanismofnanoaluminacontentinsemisolidceramicprecursorfluidontheformingperformanceviaalightcured3dprintingmethod
AT xusanqiang influencemechanismofnanoaluminacontentinsemisolidceramicprecursorfluidontheformingperformanceviaalightcured3dprintingmethod
AT libailu influencemechanismofnanoaluminacontentinsemisolidceramicprecursorfluidontheformingperformanceviaalightcured3dprintingmethod