Cargando…
Paper-based electroanalytical devices for stripping analysis of lead and cadmium in children's shoes
Children's shoes are potential sources of toxic heavy metals, especially for younger children. Electrochemical detection could be applied for effective stripping analysis of heavy metals (such as Cd and Pb). However, the substrates of working electrodes are still limited and it is not well know...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9057795/ https://www.ncbi.nlm.nih.gov/pubmed/35516589 http://dx.doi.org/10.1039/d0ra07096c |
Sumario: | Children's shoes are potential sources of toxic heavy metals, especially for younger children. Electrochemical detection could be applied for effective stripping analysis of heavy metals (such as Cd and Pb). However, the substrates of working electrodes are still limited and it is not well known which property is critical. Herein ITO glass was used as the substrate and the working electrode was modified with carbon cement for stripping analysis of Cd and Pb. The electrochemical impedance spectra of the ITO modified electrodes suggested the connection between the resistance and the electrochemical responses of heavy metals in stripping analysis, depending on the dilution ratio of the carbon cement. After optimization, the ITO modified electrodes in paper-based analytical devices could be used to sensitively quantify Cd and Pb with the concentration ranging from 10 to 1000 ppb. The detection limit of Pb(2+) could reach less than 1 ppb while that of Cd(2+) could reach 5 ppb, depending on the pH value of the sample solution. The paper-based electroanalytical devices could be used to quantify the concentration of Cd and Pb in children's shoes. This study implied the impact of the electric conductivity of the electrode substrates on stripping analysis, which might help to find more materials for the fabrication of the working electrodes. |
---|