Cargando…
Co-assembly of charge complementary peptides and their applications as organic dye/heavy metal ion (Pb(2+), Hg(2+)) absorbents and arsenic(iii/v) detectors
Learning from nature, molecular self-assembly has been used extensively to generate interesting materials using a bottom up approach. The enthusiasm in this field of research stems from the unique properties of these materials and their diverse applications. The field has not been limited to studyin...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9057852/ https://www.ncbi.nlm.nih.gov/pubmed/35516776 http://dx.doi.org/10.1039/d0ra08407g |
_version_ | 1784697996148998144 |
---|---|
author | Roy, Karabi Chetia, Monikha Sarkar, Ankan Kumar Chatterjee, Sunanda |
author_facet | Roy, Karabi Chetia, Monikha Sarkar, Ankan Kumar Chatterjee, Sunanda |
author_sort | Roy, Karabi |
collection | PubMed |
description | Learning from nature, molecular self-assembly has been used extensively to generate interesting materials using a bottom up approach. The enthusiasm in this field of research stems from the unique properties of these materials and their diverse applications. The field has not been limited to studying assembly of similar types of molecules but extended to multi component systems via the co-assembly phenomenon. We have designed two charge complementary peptides to study their co-assembly in mechanistic detail in the present work. The cooperative self-assembly is mainly driven by electrostatic interaction that is aided by aromatic interactions, hydrogen bonding interactions and hydrophobic interactions. The hydrogels obtained have been employed in waste water remediation. Both the self-assembled and co-assembled hydrogels are capable of removal of different kinds of organic dyes (cationic, anionic and neutral) and toxic metal ions (Ni(2+), Co(2+), Pb(2+) and Hg(2+)) individually and as a mixture from water with high efficiency. Additionally, the peptides developed in this study can act as ion sensors and detect arsenic in its most toxic (III/V) oxidation states. Molecular understanding of the assembly process is of fundamental importance in the rational design of such simple, robust yet economically viable materials with versatile and novel applications. |
format | Online Article Text |
id | pubmed-9057852 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90578522022-05-04 Co-assembly of charge complementary peptides and their applications as organic dye/heavy metal ion (Pb(2+), Hg(2+)) absorbents and arsenic(iii/v) detectors Roy, Karabi Chetia, Monikha Sarkar, Ankan Kumar Chatterjee, Sunanda RSC Adv Chemistry Learning from nature, molecular self-assembly has been used extensively to generate interesting materials using a bottom up approach. The enthusiasm in this field of research stems from the unique properties of these materials and their diverse applications. The field has not been limited to studying assembly of similar types of molecules but extended to multi component systems via the co-assembly phenomenon. We have designed two charge complementary peptides to study their co-assembly in mechanistic detail in the present work. The cooperative self-assembly is mainly driven by electrostatic interaction that is aided by aromatic interactions, hydrogen bonding interactions and hydrophobic interactions. The hydrogels obtained have been employed in waste water remediation. Both the self-assembled and co-assembled hydrogels are capable of removal of different kinds of organic dyes (cationic, anionic and neutral) and toxic metal ions (Ni(2+), Co(2+), Pb(2+) and Hg(2+)) individually and as a mixture from water with high efficiency. Additionally, the peptides developed in this study can act as ion sensors and detect arsenic in its most toxic (III/V) oxidation states. Molecular understanding of the assembly process is of fundamental importance in the rational design of such simple, robust yet economically viable materials with versatile and novel applications. The Royal Society of Chemistry 2020-11-18 /pmc/articles/PMC9057852/ /pubmed/35516776 http://dx.doi.org/10.1039/d0ra08407g Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Roy, Karabi Chetia, Monikha Sarkar, Ankan Kumar Chatterjee, Sunanda Co-assembly of charge complementary peptides and their applications as organic dye/heavy metal ion (Pb(2+), Hg(2+)) absorbents and arsenic(iii/v) detectors |
title | Co-assembly of charge complementary peptides and their applications as organic dye/heavy metal ion (Pb(2+), Hg(2+)) absorbents and arsenic(iii/v) detectors |
title_full | Co-assembly of charge complementary peptides and their applications as organic dye/heavy metal ion (Pb(2+), Hg(2+)) absorbents and arsenic(iii/v) detectors |
title_fullStr | Co-assembly of charge complementary peptides and their applications as organic dye/heavy metal ion (Pb(2+), Hg(2+)) absorbents and arsenic(iii/v) detectors |
title_full_unstemmed | Co-assembly of charge complementary peptides and their applications as organic dye/heavy metal ion (Pb(2+), Hg(2+)) absorbents and arsenic(iii/v) detectors |
title_short | Co-assembly of charge complementary peptides and their applications as organic dye/heavy metal ion (Pb(2+), Hg(2+)) absorbents and arsenic(iii/v) detectors |
title_sort | co-assembly of charge complementary peptides and their applications as organic dye/heavy metal ion (pb(2+), hg(2+)) absorbents and arsenic(iii/v) detectors |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9057852/ https://www.ncbi.nlm.nih.gov/pubmed/35516776 http://dx.doi.org/10.1039/d0ra08407g |
work_keys_str_mv | AT roykarabi coassemblyofchargecomplementarypeptidesandtheirapplicationsasorganicdyeheavymetalionpb2hg2absorbentsandarseniciiivdetectors AT chetiamonikha coassemblyofchargecomplementarypeptidesandtheirapplicationsasorganicdyeheavymetalionpb2hg2absorbentsandarseniciiivdetectors AT sarkarankankumar coassemblyofchargecomplementarypeptidesandtheirapplicationsasorganicdyeheavymetalionpb2hg2absorbentsandarseniciiivdetectors AT chatterjeesunanda coassemblyofchargecomplementarypeptidesandtheirapplicationsasorganicdyeheavymetalionpb2hg2absorbentsandarseniciiivdetectors |