Cargando…
DMDF-Net: Dual multiscale dilated fusion network for accurate segmentation of lesions related to COVID-19 in lung radiographic scans
The recent disaster of COVID-19 has brought the whole world to the verge of devastation because of its highly transmissible nature. In this pandemic, radiographic imaging modalities, particularly, computed tomography (CT), have shown remarkable performance for the effective diagnosis of this virus....
Autores principales: | Owais, Muhammad, Baek, Na Rae, Park, Kang Ryoung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Author(s). Published by Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9057951/ https://www.ncbi.nlm.nih.gov/pubmed/35529253 http://dx.doi.org/10.1016/j.eswa.2022.117360 |
Ejemplares similares
-
DMFF-Net: A dual encoding multiscale feature fusion network for ovarian tumor segmentation
por: Wang, Min, et al.
Publicado: (2023) -
Domain-Adaptive Artificial Intelligence-Based Model for Personalized Diagnosis of Trivial Lesions Related to COVID-19 in Chest Computed Tomography Scans
por: Owais, Muhammad, et al.
Publicado: (2021) -
MSAL-Net: improve accurate segmentation of nuclei in histopathology images by multiscale attention learning network
por: Ali, Haider, et al.
Publicado: (2022) -
Semantic segmentation of COVID-19 lesions with a multiscale dilated convolutional network
por: Zhang, Jianxiong, et al.
Publicado: (2022) -
BGM-Net: Boundary-Guided Multiscale Network for Breast Lesion Segmentation in Ultrasound
por: Wu, Yunzhu, et al.
Publicado: (2021)