Cargando…
CrodenseNet: An efficient parallel cross DenseNet for COVID-19 infection detection
Purpose At present, though the application of Convolution Neural Network (CNN) to detect COVID-19 infection significantly enhance the detection performance and efficiency, it often causes low sensitivity and poor generalization performance. Methods In this article, an effective CNN, CrodenseNet is p...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9058031/ https://www.ncbi.nlm.nih.gov/pubmed/35530171 http://dx.doi.org/10.1016/j.bspc.2022.103775 |
Sumario: | Purpose At present, though the application of Convolution Neural Network (CNN) to detect COVID-19 infection significantly enhance the detection performance and efficiency, it often causes low sensitivity and poor generalization performance. Methods In this article, an effective CNN, CrodenseNet is proposed for COVID-19 detection. CrodenseNet consists of two parallel DenseNet Blocks, each of which contains dilated convolutions with different expansion scales and traditional convolutions. We employ cross-dense connections and one-sided soft thresholding to the layers for filtering of noise-related features, and increase information interaction of local and global features. Results Cross-validation experiments on COVID-19x dataset shows that via CrodenseNet the COVID-19 detection attains the precision of 0.967 ± 0.010, recall of 0.967 ± 0.010, F1-score of 0.973 ± 0.005, AP (area under P-R curve) of 0.991 ± 0.002, and AUC (area under ROC curve) of 0.996 ± 0.001. Conclusion CrodenseNet outperforms a variety of state-of-the-art models in terms of evaluation metrics so it assists clinicians to prompt diagnosis of COVID-19 infection. |
---|