Cargando…
Feature Selection in High Dimensional Biomedical Data Based on BF-SFLA
High-dimensional biomedical data contained many irrelevant or weakly correlated features, which affected the efficiency of disease diagnosis. This manuscript presented a feature selection method for high-dimensional biomedical data based on the chemotaxis foraging-shuffled frog leaping algorithm (BF...
Autores principales: | Dai, Yongqiang, Niu, Lili, Wei, Linjing, Tang, Jie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9058075/ https://www.ncbi.nlm.nih.gov/pubmed/35509450 http://dx.doi.org/10.3389/fnins.2022.854685 |
Ejemplares similares
-
Application of hybrid SFLA-ACO algorithm and CAM softwares for optimization of drilling tool path problems
por: Mehmood, Nasir, et al.
Publicado: (2023) -
Classification of high dimensional biomedical data based on feature selection using redundant removal
por: Zhang, Bingtao, et al.
Publicado: (2019) -
An Efficient Binary Sand Cat Swarm Optimization for Feature Selection in High-Dimensional Biomedical Data
por: Pashaei, Elnaz
Publicado: (2023) -
Feature selection for high-dimensional temporal data
por: Tsagris, Michail, et al.
Publicado: (2018) -
The three-dimensional BF model with cosmological term in the axial gauge
por: Brandhuber, A, et al.
Publicado: (1995)