Cargando…
Zero-field slow relaxation of magnetization in cobalt(ii) single-ion magnets: suppression of quantum tunneling of magnetization by tailoring the intermolecular magnetic coupling
The correlation between magnetic relaxation dynamics and the alignment of single-ion magnets (SIMs) in a crystal was investigated using four analogous cobalt(ii) complexes with unique hydrogen-bond networks. The hydrogen-bonding interactions in the crystals resulted in a relatively short intermolecu...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9058397/ https://www.ncbi.nlm.nih.gov/pubmed/35519684 http://dx.doi.org/10.1039/d0ra08286d |
_version_ | 1784698103079632896 |
---|---|
author | Mitsuhashi, Ryoji Hosoya, Satoshi Suzuki, Takayoshi Sunatsuki, Yukinari Sakiyama, Hiroshi Mikuriya, Masahiro |
author_facet | Mitsuhashi, Ryoji Hosoya, Satoshi Suzuki, Takayoshi Sunatsuki, Yukinari Sakiyama, Hiroshi Mikuriya, Masahiro |
author_sort | Mitsuhashi, Ryoji |
collection | PubMed |
description | The correlation between magnetic relaxation dynamics and the alignment of single-ion magnets (SIMs) in a crystal was investigated using four analogous cobalt(ii) complexes with unique hydrogen-bond networks. The hydrogen-bonding interactions in the crystals resulted in a relatively short intermolecular Co⋯Co distance, which led to non-zero intermolecular magnetic coupling. All the complexes with a Co⋯Co distance shorter than 6.5 Å exhibited zero-field slow magnetic relaxation as weak magnetic interactions split the ground ±M(s) levels and suppressed quantum tunneling of magnetization (QTM). In particular, antiferromagnetically coupled one-dimensional chain SIM networks effectively suppressed QTM when the two intrachain Co⋯Co distances were non-equivalent. However, when the two distances in a chain were equivalent and each molecular symmetry axis aligned parallell within the chain, QTM suppression was insufficient because magnetic coupling from the adjacent molecules was virtually cancelled. Partial substitution of the Co(II) ion with the diamagnetic Zn(II) ion up to 33% for this complex resulted in complete QTM suppression in the absence of an external field. These results show that the manipulation of intermolecular distances and alignments is effective for suppressing undesired QTM events in SIMs. |
format | Online Article Text |
id | pubmed-9058397 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90583972022-05-04 Zero-field slow relaxation of magnetization in cobalt(ii) single-ion magnets: suppression of quantum tunneling of magnetization by tailoring the intermolecular magnetic coupling Mitsuhashi, Ryoji Hosoya, Satoshi Suzuki, Takayoshi Sunatsuki, Yukinari Sakiyama, Hiroshi Mikuriya, Masahiro RSC Adv Chemistry The correlation between magnetic relaxation dynamics and the alignment of single-ion magnets (SIMs) in a crystal was investigated using four analogous cobalt(ii) complexes with unique hydrogen-bond networks. The hydrogen-bonding interactions in the crystals resulted in a relatively short intermolecular Co⋯Co distance, which led to non-zero intermolecular magnetic coupling. All the complexes with a Co⋯Co distance shorter than 6.5 Å exhibited zero-field slow magnetic relaxation as weak magnetic interactions split the ground ±M(s) levels and suppressed quantum tunneling of magnetization (QTM). In particular, antiferromagnetically coupled one-dimensional chain SIM networks effectively suppressed QTM when the two intrachain Co⋯Co distances were non-equivalent. However, when the two distances in a chain were equivalent and each molecular symmetry axis aligned parallell within the chain, QTM suppression was insufficient because magnetic coupling from the adjacent molecules was virtually cancelled. Partial substitution of the Co(II) ion with the diamagnetic Zn(II) ion up to 33% for this complex resulted in complete QTM suppression in the absence of an external field. These results show that the manipulation of intermolecular distances and alignments is effective for suppressing undesired QTM events in SIMs. The Royal Society of Chemistry 2020-12-09 /pmc/articles/PMC9058397/ /pubmed/35519684 http://dx.doi.org/10.1039/d0ra08286d Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Mitsuhashi, Ryoji Hosoya, Satoshi Suzuki, Takayoshi Sunatsuki, Yukinari Sakiyama, Hiroshi Mikuriya, Masahiro Zero-field slow relaxation of magnetization in cobalt(ii) single-ion magnets: suppression of quantum tunneling of magnetization by tailoring the intermolecular magnetic coupling |
title | Zero-field slow relaxation of magnetization in cobalt(ii) single-ion magnets: suppression of quantum tunneling of magnetization by tailoring the intermolecular magnetic coupling |
title_full | Zero-field slow relaxation of magnetization in cobalt(ii) single-ion magnets: suppression of quantum tunneling of magnetization by tailoring the intermolecular magnetic coupling |
title_fullStr | Zero-field slow relaxation of magnetization in cobalt(ii) single-ion magnets: suppression of quantum tunneling of magnetization by tailoring the intermolecular magnetic coupling |
title_full_unstemmed | Zero-field slow relaxation of magnetization in cobalt(ii) single-ion magnets: suppression of quantum tunneling of magnetization by tailoring the intermolecular magnetic coupling |
title_short | Zero-field slow relaxation of magnetization in cobalt(ii) single-ion magnets: suppression of quantum tunneling of magnetization by tailoring the intermolecular magnetic coupling |
title_sort | zero-field slow relaxation of magnetization in cobalt(ii) single-ion magnets: suppression of quantum tunneling of magnetization by tailoring the intermolecular magnetic coupling |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9058397/ https://www.ncbi.nlm.nih.gov/pubmed/35519684 http://dx.doi.org/10.1039/d0ra08286d |
work_keys_str_mv | AT mitsuhashiryoji zerofieldslowrelaxationofmagnetizationincobaltiisingleionmagnetssuppressionofquantumtunnelingofmagnetizationbytailoringtheintermolecularmagneticcoupling AT hosoyasatoshi zerofieldslowrelaxationofmagnetizationincobaltiisingleionmagnetssuppressionofquantumtunnelingofmagnetizationbytailoringtheintermolecularmagneticcoupling AT suzukitakayoshi zerofieldslowrelaxationofmagnetizationincobaltiisingleionmagnetssuppressionofquantumtunnelingofmagnetizationbytailoringtheintermolecularmagneticcoupling AT sunatsukiyukinari zerofieldslowrelaxationofmagnetizationincobaltiisingleionmagnetssuppressionofquantumtunnelingofmagnetizationbytailoringtheintermolecularmagneticcoupling AT sakiyamahiroshi zerofieldslowrelaxationofmagnetizationincobaltiisingleionmagnetssuppressionofquantumtunnelingofmagnetizationbytailoringtheintermolecularmagneticcoupling AT mikuriyamasahiro zerofieldslowrelaxationofmagnetizationincobaltiisingleionmagnetssuppressionofquantumtunnelingofmagnetizationbytailoringtheintermolecularmagneticcoupling |