Cargando…

Attenuation of Cr/Pb in bauxite leachates by bentonite–polymer composite geosynthetic clay liners

Three commercially available bentonite–polymer composite geosynthetic clay liners (BPC GCLs) were selected for hydraulic conductivity testing, respectively permeated by two types of bauxite leachates with high alkalinity (pH > 12) and high ionic strength (620.3 mM). The influence of BPC GCLs on t...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Qin, Peng, Daoping, Wu, Zheng, Huang, Tao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9058447/
https://www.ncbi.nlm.nih.gov/pubmed/35516273
http://dx.doi.org/10.1039/d0ra06921c
Descripción
Sumario:Three commercially available bentonite–polymer composite geosynthetic clay liners (BPC GCLs) were selected for hydraulic conductivity testing, respectively permeated by two types of bauxite leachates with high alkalinity (pH > 12) and high ionic strength (620.3 mM). The influence of BPC GCLs on the attenuation behavior of Cr/Pb in the bauxite leachates was analyzed. The BPC GCLs with a low hydraulic conductivity (k < 10(−10) m s(−1)) retard the migration of Cr and Pb and the Cr had a higher mobility than Pb in the BPC GCLs. Scanning electron microscope (SEM) microstructure analysis showed that the migration and attenuation behavior of Cr/Pb mainly depended on the chemical properties of the leachates, polymer content and the microstructure of the polymer. Higher attenuation of heavy metals was obtained with bauxite leachates having higher ionic strength. Sufficient polymer content is needed to ensure BPC GCLs have adequately low hydraulic conductivity to suppress attenuation of heavy metals. The gelatinous structure associated with hydrated linear or crosslinked polymer diminishes when the polymer in a BPC is in contact with bauxite leachates. Compromising the hydrogel structure promotes polymer elution and leaves pore space open, resulting in attenuation of heavy metals.