Cargando…
Investigation of the target-site resistance of EPSP synthase mutants P106T and T102I/P106S against glyphosate
The shikimate pathway enzyme 5-enolpyruvyl shikimate-3-phosphate synthase (EPSPS) catalyzes the reaction involved in the production of amino acids essential for plant growth and survival. Thus, EPSPS is the main target of various herbicides, including glyphosate, a broad-spectrum herbicide that acts...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9058485/ https://www.ncbi.nlm.nih.gov/pubmed/35517162 http://dx.doi.org/10.1039/d0ra09061a |
_version_ | 1784698124579635200 |
---|---|
author | Fonseca, Emily C. M. da Costa, Kauê S. Lameira, Jerônimo Alves, Cláudio Nahum Lima, Anderson H. |
author_facet | Fonseca, Emily C. M. da Costa, Kauê S. Lameira, Jerônimo Alves, Cláudio Nahum Lima, Anderson H. |
author_sort | Fonseca, Emily C. M. |
collection | PubMed |
description | The shikimate pathway enzyme 5-enolpyruvyl shikimate-3-phosphate synthase (EPSPS) catalyzes the reaction involved in the production of amino acids essential for plant growth and survival. Thus, EPSPS is the main target of various herbicides, including glyphosate, a broad-spectrum herbicide that acts as a competitive inhibitor of phosphoenolpyruvate (PEP), which is the natural substrate of EPSPS. However, punctual mutations in the EPSPS gene have led to glyphosate resistance in some plants. Here, we investigated the mechanism of EPSPS resistance to glyphosate in mutants of two weed species, Conyza sumatrensis (mutant, P106T) and Eleusine indica (mutant, T102I/P106S), both of which have an economic impact on industrial crops. Molecular dynamics (MD) simulations and binding free energy calculations revealed the influence of the mutations on the affinity of glyphosate in the PEP-binding site. The amino acid residues of the EPSPS protein in both species involved in glyphosate resistance were elucidated as well as other residues that could be useful for protein engineering. In addition, during MD simulations, we identified conformational changes in glyphosate when complexed with resistant EPSPS, related to loss of herbicide activity and binding affinity. Our computational findings are consistent with previous experimental results and clarify the inhibitory activity of glyphosate as well as the structural target-site resistance of EPSPS against glyphosate. |
format | Online Article Text |
id | pubmed-9058485 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90584852022-05-04 Investigation of the target-site resistance of EPSP synthase mutants P106T and T102I/P106S against glyphosate Fonseca, Emily C. M. da Costa, Kauê S. Lameira, Jerônimo Alves, Cláudio Nahum Lima, Anderson H. RSC Adv Chemistry The shikimate pathway enzyme 5-enolpyruvyl shikimate-3-phosphate synthase (EPSPS) catalyzes the reaction involved in the production of amino acids essential for plant growth and survival. Thus, EPSPS is the main target of various herbicides, including glyphosate, a broad-spectrum herbicide that acts as a competitive inhibitor of phosphoenolpyruvate (PEP), which is the natural substrate of EPSPS. However, punctual mutations in the EPSPS gene have led to glyphosate resistance in some plants. Here, we investigated the mechanism of EPSPS resistance to glyphosate in mutants of two weed species, Conyza sumatrensis (mutant, P106T) and Eleusine indica (mutant, T102I/P106S), both of which have an economic impact on industrial crops. Molecular dynamics (MD) simulations and binding free energy calculations revealed the influence of the mutations on the affinity of glyphosate in the PEP-binding site. The amino acid residues of the EPSPS protein in both species involved in glyphosate resistance were elucidated as well as other residues that could be useful for protein engineering. In addition, during MD simulations, we identified conformational changes in glyphosate when complexed with resistant EPSPS, related to loss of herbicide activity and binding affinity. Our computational findings are consistent with previous experimental results and clarify the inhibitory activity of glyphosate as well as the structural target-site resistance of EPSPS against glyphosate. The Royal Society of Chemistry 2020-12-16 /pmc/articles/PMC9058485/ /pubmed/35517162 http://dx.doi.org/10.1039/d0ra09061a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Fonseca, Emily C. M. da Costa, Kauê S. Lameira, Jerônimo Alves, Cláudio Nahum Lima, Anderson H. Investigation of the target-site resistance of EPSP synthase mutants P106T and T102I/P106S against glyphosate |
title | Investigation of the target-site resistance of EPSP synthase mutants P106T and T102I/P106S against glyphosate |
title_full | Investigation of the target-site resistance of EPSP synthase mutants P106T and T102I/P106S against glyphosate |
title_fullStr | Investigation of the target-site resistance of EPSP synthase mutants P106T and T102I/P106S against glyphosate |
title_full_unstemmed | Investigation of the target-site resistance of EPSP synthase mutants P106T and T102I/P106S against glyphosate |
title_short | Investigation of the target-site resistance of EPSP synthase mutants P106T and T102I/P106S against glyphosate |
title_sort | investigation of the target-site resistance of epsp synthase mutants p106t and t102i/p106s against glyphosate |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9058485/ https://www.ncbi.nlm.nih.gov/pubmed/35517162 http://dx.doi.org/10.1039/d0ra09061a |
work_keys_str_mv | AT fonsecaemilycm investigationofthetargetsiteresistanceofepspsynthasemutantsp106tandt102ip106sagainstglyphosate AT dacostakaues investigationofthetargetsiteresistanceofepspsynthasemutantsp106tandt102ip106sagainstglyphosate AT lameirajeronimo investigationofthetargetsiteresistanceofepspsynthasemutantsp106tandt102ip106sagainstglyphosate AT alvesclaudionahum investigationofthetargetsiteresistanceofepspsynthasemutantsp106tandt102ip106sagainstglyphosate AT limaandersonh investigationofthetargetsiteresistanceofepspsynthasemutantsp106tandt102ip106sagainstglyphosate |