Cargando…

New accurate molecular dynamics potential function to model the phase transformation of cesium lead triiodide perovskite (CsPbI(3))

Inorganic metallic halide perovskites and cesium lead triiodide, CsPbI(3), in particular, have gained enormous attention recently due to their unique photovoltaic properties and low processing temperatures. However, their structural stability and phase transition still need an in-depth investigation...

Descripción completa

Detalles Bibliográficos
Autores principales: Almishal, Saeed S. I., Rashwan, Ola
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9058495/
https://www.ncbi.nlm.nih.gov/pubmed/35517159
http://dx.doi.org/10.1039/d0ra08434d
Descripción
Sumario:Inorganic metallic halide perovskites and cesium lead triiodide, CsPbI(3), in particular, have gained enormous attention recently due to their unique photovoltaic properties and low processing temperatures. However, their structural stability and phase transition still need an in-depth investigation to better optimize their optoelectronic properties. For sake of time and cost, Classical Molecular Dynamics (CMD) and first principles calculations are being used to predict the structure stability and phase transition of CsPbI(3). The major challenge of CMD is the choice of proper interatomic potential functions. In this paper, a new hybrid force field is being introduced, which integrates the embedded atomic potentials of Cs–Cs and Pb–Pb with Buckingham–Coulomb potentials. The Buckingham–Coulomb interatomic potential was solely employed as well. The outputs from both force fields were reported and compared to the experimental values. In fact, the new Hybrid Embedded Atomic Buckingham–Coulomb (EABC) potential reproduces, with a great degree of accuracy (within 2.5%), the structural properties, such as the radial distribution functions, interatomic separation distances, and the density. Also, it detects the phase transformation from an orthorhombic into a cubic crystal structure and the melting temperature at 594 K and 750 K respectively which agrees with the experimental values to within 1%. The new proposed hybrid potential proved to be accurate so it could potentially be used to infer the structure stability and the mechanical and thermal properties of the pure inorganic halide perovskites and the mixed halide perovskites as well which are used in various applications.