Cargando…

Behavioural regulation of mineral salt intake in honeybees: a self-selection approach

Minerals are required in small amounts to sustain metabolic activity in animals, but mineral deficiencies can also lead to metabolic bottlenecks and mineral excesses can induce toxicity. For these reasons, we could reasonably expect that micronutrients are actively regulated around nutritional optim...

Descripción completa

Detalles Bibliográficos
Autores principales: de Sousa, Raquel T., Darnell, Robyn, Wright, Geraldine A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9058550/
https://www.ncbi.nlm.nih.gov/pubmed/35491591
http://dx.doi.org/10.1098/rstb.2021.0169
Descripción
Sumario:Minerals are required in small amounts to sustain metabolic activity in animals, but mineral deficiencies can also lead to metabolic bottlenecks and mineral excesses can induce toxicity. For these reasons, we could reasonably expect that micronutrients are actively regulated around nutritional optima. Honeybees have co-evolved with flowering plants such that their main sources of nutrients are floral pollen and nectar. Like other insects, honeybees balance their intake of multiple macronutrients during food consumption using a combination of pre- and post-ingestive mechanisms. How they regulate their intake of micronutrients using these mechanisms has rarely been studied. Using two-choice feeding assays, we tested whether caged and broodless young workers preferred solutions containing individual salts (NaCl, KCl, CaCl(2), MgCl(2)) or metals (FeCl(3), CuCl(2), ZnCl(2), MnCl(2)) in a concentration-dependent manner. We found that young adult workers could only self-select and optimize their dietary intake around specific concentrations of sodium, iron and copper. Bees largely avoided high concentration mineral solutions to minimize toxicity. These experiments demonstrate the limits of the regulation of intake of micronutrients in honeybees. This is the first study to compare this form of behaviour in one organism for eight different micronutrients. This article is part of the theme issue ‘Natural processes influencing pollinator health: from chemistry to landscapes’.