Cargando…

Parameter control and property analysis in the preparation of platinum iodide nanocolloids through the electrical spark discharge method

This study employed the electrical spark discharge method to prepare platinum iodide nanocolloids at normal temperature and pressure. Wires composed of 99.5% platinum were applied as the electrodes, and 250 ppm liquid iodine was employed as the dielectric fluid. An electric discharge machine was app...

Descripción completa

Detalles Bibliográficos
Autores principales: Tseng, Kuo-Hsiung, Lin, Zih-Yuan, Chung, Meng-Yun, Tien, Der-Chi, Stobinski, Leszek
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9058553/
https://www.ncbi.nlm.nih.gov/pubmed/35518241
http://dx.doi.org/10.1039/d0ra04048g
Descripción
Sumario:This study employed the electrical spark discharge method to prepare platinum iodide nanocolloids at normal temperature and pressure. Wires composed of 99.5% platinum were applied as the electrodes, and 250 ppm liquid iodine was employed as the dielectric fluid. An electric discharge machine was applied to generate cyclic direct current pulse power between the electrodes. Five sets of turn-on and turn-off time (T(on)–T(off)) parameters, namely 10–10, 30–30, 50–50, 70–70, and 90–90 μs, were implemented to identify the optimal nanocolloid preparation conditions. An ultraviolet-visible spectroscope, a Zetasizer, and a transmission electron microscope were used to examine the nanocolloids' properties. The results revealed that the T(on)–T(off) parameter set of 10–10 μs was the most ideal setting for platinum iodide nanocolloid preparation. With this parameter set, the characteristic wavelengths of the nanocolloid were 285 and 350 nm, respectively; its absorbance values were 0.481 and 0.425, respectively; and its zeta potential and particle size were −30.3 mV and 61.88 nm, respectively. This parameter set yielded maximized absorbance, satisfactory suspension stability, and minimized nanoparticle sizes for the nanocolloid.