Cargando…

Low-cost electronic circuitry for photoacoustic gas sensing

The circuitry comprises a sine wave generator based on direct digital synthesis, a laser diode driver module, a band-pass frequency filter, a synchronous detector with phase adjustment circuitry and a low pass filter to form an analog lock-in amplifier, and an analog-to-digital converter. A 32-bit A...

Descripción completa

Detalles Bibliográficos
Autores principales: Keeratirawee, Kanchalar, Furter, Jasmine S., Hauser, Peter C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9058730/
https://www.ncbi.nlm.nih.gov/pubmed/35509926
http://dx.doi.org/10.1016/j.ohx.2022.e00280
_version_ 1784698173973856256
author Keeratirawee, Kanchalar
Furter, Jasmine S.
Hauser, Peter C.
author_facet Keeratirawee, Kanchalar
Furter, Jasmine S.
Hauser, Peter C.
author_sort Keeratirawee, Kanchalar
collection PubMed
description The circuitry comprises a sine wave generator based on direct digital synthesis, a laser diode driver module, a band-pass frequency filter, a synchronous detector with phase adjustment circuitry and a low pass filter to form an analog lock-in amplifier, and an analog-to-digital converter. A 32-bit ARM microcontroller programmed with the open source Mecrisp dialect of the Forth interpreter language is used to set the frequency, and read the data from the analog-to-digital converter. The circuitry is tethered via a serial interface to a personal computer. A graphical user interface written in Phython allows easy interaction with the microcontroller by sending the appropriate Forth commands. The data acquired is visualized and stored on the personal computer for further processing. The circuitry is easy to build as it is based on through-hole devices, except for two necessary surface mount items, which, however, still can be soldered with a fine tipped soldering iron. The performance of the circuitry was demonstrated by the photoacoustic detection of NO(2) using a laser diode with a wavelength of 450 nm.
format Online
Article
Text
id pubmed-9058730
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-90587302022-05-03 Low-cost electronic circuitry for photoacoustic gas sensing Keeratirawee, Kanchalar Furter, Jasmine S. Hauser, Peter C. HardwareX Article The circuitry comprises a sine wave generator based on direct digital synthesis, a laser diode driver module, a band-pass frequency filter, a synchronous detector with phase adjustment circuitry and a low pass filter to form an analog lock-in amplifier, and an analog-to-digital converter. A 32-bit ARM microcontroller programmed with the open source Mecrisp dialect of the Forth interpreter language is used to set the frequency, and read the data from the analog-to-digital converter. The circuitry is tethered via a serial interface to a personal computer. A graphical user interface written in Phython allows easy interaction with the microcontroller by sending the appropriate Forth commands. The data acquired is visualized and stored on the personal computer for further processing. The circuitry is easy to build as it is based on through-hole devices, except for two necessary surface mount items, which, however, still can be soldered with a fine tipped soldering iron. The performance of the circuitry was demonstrated by the photoacoustic detection of NO(2) using a laser diode with a wavelength of 450 nm. Elsevier 2022-02-16 /pmc/articles/PMC9058730/ /pubmed/35509926 http://dx.doi.org/10.1016/j.ohx.2022.e00280 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Keeratirawee, Kanchalar
Furter, Jasmine S.
Hauser, Peter C.
Low-cost electronic circuitry for photoacoustic gas sensing
title Low-cost electronic circuitry for photoacoustic gas sensing
title_full Low-cost electronic circuitry for photoacoustic gas sensing
title_fullStr Low-cost electronic circuitry for photoacoustic gas sensing
title_full_unstemmed Low-cost electronic circuitry for photoacoustic gas sensing
title_short Low-cost electronic circuitry for photoacoustic gas sensing
title_sort low-cost electronic circuitry for photoacoustic gas sensing
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9058730/
https://www.ncbi.nlm.nih.gov/pubmed/35509926
http://dx.doi.org/10.1016/j.ohx.2022.e00280
work_keys_str_mv AT keeratiraweekanchalar lowcostelectroniccircuitryforphotoacousticgassensing
AT furterjasmines lowcostelectroniccircuitryforphotoacousticgassensing
AT hauserpeterc lowcostelectroniccircuitryforphotoacousticgassensing