Cargando…
Representing the dynamics of high-dimensional data with non-redundant wavelets
A crucial question in data science is to extract meaningful information embedded in high-dimensional data into a low-dimensional set of features that can represent the original data at different levels. Wavelet analysis is a pervasive method for decomposing time-series signals into a few levels with...
Autores principales: | Jia, Shanshan, Li, Xingyi, Huang, Tiejun, Liu, Jian K., Yu, Zhaofei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9058841/ https://www.ncbi.nlm.nih.gov/pubmed/35510192 http://dx.doi.org/10.1016/j.patter.2021.100424 |
Ejemplares similares
-
Unraveling neural coding of dynamic natural visual scenes via convolutional recurrent neural networks
por: Zheng, Yajing, et al.
Publicado: (2021) -
A Low Redundancy Wavelet Entropy Edge Detection Algorithm
por: Tao, Yiting, et al.
Publicado: (2021) -
Multiset sparse redundancy analysis for high‐dimensional omics data
por: Csala, Attila, et al.
Publicado: (2018) -
Deep learning prediction of two-dimensional ocean dynamics with wavelet-compressed data
por: Muhamed Ali, Ali, et al.
Publicado: (2022) -
Intelligent Extraction of Salient Feature From Electroencephalogram Using Redundant Discrete Wavelet Transform
por: Wang, Xian-Yu, et al.
Publicado: (2022)