Cargando…
Development of mini-lysimeter system for use in irrigation automation of container-grown crops
Development of more efficient and sustainable irrigation technology is critical to maintain horticultural production in a water scarce future. Sensor controlled irrigation is an emerging technology that has the potential to increase irrigation efficiency and reduce overwatering by using real-time da...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9058857/ https://www.ncbi.nlm.nih.gov/pubmed/35509917 http://dx.doi.org/10.1016/j.ohx.2022.e00298 |
Sumario: | Development of more efficient and sustainable irrigation technology is critical to maintain horticultural production in a water scarce future. Sensor controlled irrigation is an emerging technology that has the potential to increase irrigation efficiency and reduce overwatering by using real-time data on container water status to control the timing and volume of irrigation events. This project presents a novel irrigation control system using lysimetry. We develop small scale lysimeters, referred to as mini-lysimeter, which provide a direct measure of actual evapotranspiration (ET) via a change in mass of containerized crops. As such, mini-lysimeter sensors have the potential to be an effective instrument for automatic irrigation scheduling. This paper presents the mini-lysimeter controlled irrigation system design in detail, including the mini-lysimeter sensors, data logger and control system configuration, and the hardware needed to integrate the control system into existing irrigation infrastructure. A proof of concept study is presented where mini-lysimeter (ML) controlled irrigation is compared to a traditional timer-based irrigation schedule. Results show that the ML controlled irrigation system can produce plants of equal size to traditional irrigation methods while using 26% less water on average. The outcome of this study indicates that the hardware presented here is reliable and robust enough to produce quality plants in a real nursery production setting, and this technology provides a novel approach to improving water efficiency in container nurseries. |
---|