Cargando…
Artificial intelligence for detection of microsatellite instability in colorectal cancer—a multicentric analysis of a pre-screening tool for clinical application
BACKGROUND: Microsatellite instability (MSI)/mismatch repair deficiency (dMMR) is a key genetic feature which should be tested in every patient with colorectal cancer (CRC) according to medical guidelines. Artificial intelligence (AI) methods can detect MSI/dMMR directly in routine pathology slides,...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9058894/ https://www.ncbi.nlm.nih.gov/pubmed/35247870 http://dx.doi.org/10.1016/j.esmoop.2022.100400 |
_version_ | 1784698210480029696 |
---|---|
author | Echle, A. Ghaffari Laleh, N. Quirke, P. Grabsch, H.I. Muti, H.S. Saldanha, O.L. Brockmoeller, S.F. van den Brandt, P.A. Hutchins, G.G.A. Richman, S.D. Horisberger, K. Galata, C. Ebert, M.P. Eckardt, M. Boutros, M. Horst, D. Reissfelder, C. Alwers, E. Brinker, T.J. Langer, R. Jenniskens, J.C.A. Offermans, K. Mueller, W. Gray, R. Gruber, S.B. Greenson, J.K. Rennert, G. Bonner, J.D. Schmolze, D. Chang-Claude, J. Brenner, H. Trautwein, C. Boor, P. Jaeger, D. Gaisa, N.T. Hoffmeister, M. West, N.P. Kather, J.N. |
author_facet | Echle, A. Ghaffari Laleh, N. Quirke, P. Grabsch, H.I. Muti, H.S. Saldanha, O.L. Brockmoeller, S.F. van den Brandt, P.A. Hutchins, G.G.A. Richman, S.D. Horisberger, K. Galata, C. Ebert, M.P. Eckardt, M. Boutros, M. Horst, D. Reissfelder, C. Alwers, E. Brinker, T.J. Langer, R. Jenniskens, J.C.A. Offermans, K. Mueller, W. Gray, R. Gruber, S.B. Greenson, J.K. Rennert, G. Bonner, J.D. Schmolze, D. Chang-Claude, J. Brenner, H. Trautwein, C. Boor, P. Jaeger, D. Gaisa, N.T. Hoffmeister, M. West, N.P. Kather, J.N. |
author_sort | Echle, A. |
collection | PubMed |
description | BACKGROUND: Microsatellite instability (MSI)/mismatch repair deficiency (dMMR) is a key genetic feature which should be tested in every patient with colorectal cancer (CRC) according to medical guidelines. Artificial intelligence (AI) methods can detect MSI/dMMR directly in routine pathology slides, but the test performance has not been systematically investigated with predefined test thresholds. METHOD: We trained and validated AI-based MSI/dMMR detectors and evaluated predefined performance metrics using nine patient cohorts of 8343 patients across different countries and ethnicities. RESULTS: Classifiers achieved clinical-grade performance, yielding an area under the receiver operating curve (AUROC) of up to 0.96 without using any manual annotations. Subsequently, we show that the AI system can be applied as a rule-out test: by using cohort-specific thresholds, on average 52.73% of tumors in each surgical cohort [total number of MSI/dMMR = 1020, microsatellite stable (MSS)/ proficient mismatch repair (pMMR) = 7323 patients] could be identified as MSS/pMMR with a fixed sensitivity at 95%. In an additional cohort of N = 1530 (MSI/dMMR = 211, MSS/pMMR = 1319) endoscopy biopsy samples, the system achieved an AUROC of 0.89, and the cohort-specific threshold ruled out 44.12% of tumors with a fixed sensitivity at 95%. As a more robust alternative to cohort-specific thresholds, we showed that with a fixed threshold of 0.25 for all the cohorts, we can rule-out 25.51% in surgical specimens and 6.10% in biopsies. INTERPRETATION: When applied in a clinical setting, this means that the AI system can rule out MSI/dMMR in a quarter (with global thresholds) or half of all CRC patients (with local fine-tuning), thereby reducing cost and turnaround time for molecular profiling. |
format | Online Article Text |
id | pubmed-9058894 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-90588942022-05-03 Artificial intelligence for detection of microsatellite instability in colorectal cancer—a multicentric analysis of a pre-screening tool for clinical application Echle, A. Ghaffari Laleh, N. Quirke, P. Grabsch, H.I. Muti, H.S. Saldanha, O.L. Brockmoeller, S.F. van den Brandt, P.A. Hutchins, G.G.A. Richman, S.D. Horisberger, K. Galata, C. Ebert, M.P. Eckardt, M. Boutros, M. Horst, D. Reissfelder, C. Alwers, E. Brinker, T.J. Langer, R. Jenniskens, J.C.A. Offermans, K. Mueller, W. Gray, R. Gruber, S.B. Greenson, J.K. Rennert, G. Bonner, J.D. Schmolze, D. Chang-Claude, J. Brenner, H. Trautwein, C. Boor, P. Jaeger, D. Gaisa, N.T. Hoffmeister, M. West, N.P. Kather, J.N. ESMO Open Original Research BACKGROUND: Microsatellite instability (MSI)/mismatch repair deficiency (dMMR) is a key genetic feature which should be tested in every patient with colorectal cancer (CRC) according to medical guidelines. Artificial intelligence (AI) methods can detect MSI/dMMR directly in routine pathology slides, but the test performance has not been systematically investigated with predefined test thresholds. METHOD: We trained and validated AI-based MSI/dMMR detectors and evaluated predefined performance metrics using nine patient cohorts of 8343 patients across different countries and ethnicities. RESULTS: Classifiers achieved clinical-grade performance, yielding an area under the receiver operating curve (AUROC) of up to 0.96 without using any manual annotations. Subsequently, we show that the AI system can be applied as a rule-out test: by using cohort-specific thresholds, on average 52.73% of tumors in each surgical cohort [total number of MSI/dMMR = 1020, microsatellite stable (MSS)/ proficient mismatch repair (pMMR) = 7323 patients] could be identified as MSS/pMMR with a fixed sensitivity at 95%. In an additional cohort of N = 1530 (MSI/dMMR = 211, MSS/pMMR = 1319) endoscopy biopsy samples, the system achieved an AUROC of 0.89, and the cohort-specific threshold ruled out 44.12% of tumors with a fixed sensitivity at 95%. As a more robust alternative to cohort-specific thresholds, we showed that with a fixed threshold of 0.25 for all the cohorts, we can rule-out 25.51% in surgical specimens and 6.10% in biopsies. INTERPRETATION: When applied in a clinical setting, this means that the AI system can rule out MSI/dMMR in a quarter (with global thresholds) or half of all CRC patients (with local fine-tuning), thereby reducing cost and turnaround time for molecular profiling. Elsevier 2022-03-02 /pmc/articles/PMC9058894/ /pubmed/35247870 http://dx.doi.org/10.1016/j.esmoop.2022.100400 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Original Research Echle, A. Ghaffari Laleh, N. Quirke, P. Grabsch, H.I. Muti, H.S. Saldanha, O.L. Brockmoeller, S.F. van den Brandt, P.A. Hutchins, G.G.A. Richman, S.D. Horisberger, K. Galata, C. Ebert, M.P. Eckardt, M. Boutros, M. Horst, D. Reissfelder, C. Alwers, E. Brinker, T.J. Langer, R. Jenniskens, J.C.A. Offermans, K. Mueller, W. Gray, R. Gruber, S.B. Greenson, J.K. Rennert, G. Bonner, J.D. Schmolze, D. Chang-Claude, J. Brenner, H. Trautwein, C. Boor, P. Jaeger, D. Gaisa, N.T. Hoffmeister, M. West, N.P. Kather, J.N. Artificial intelligence for detection of microsatellite instability in colorectal cancer—a multicentric analysis of a pre-screening tool for clinical application |
title | Artificial intelligence for detection of microsatellite instability in colorectal cancer—a multicentric analysis of a pre-screening tool for clinical application |
title_full | Artificial intelligence for detection of microsatellite instability in colorectal cancer—a multicentric analysis of a pre-screening tool for clinical application |
title_fullStr | Artificial intelligence for detection of microsatellite instability in colorectal cancer—a multicentric analysis of a pre-screening tool for clinical application |
title_full_unstemmed | Artificial intelligence for detection of microsatellite instability in colorectal cancer—a multicentric analysis of a pre-screening tool for clinical application |
title_short | Artificial intelligence for detection of microsatellite instability in colorectal cancer—a multicentric analysis of a pre-screening tool for clinical application |
title_sort | artificial intelligence for detection of microsatellite instability in colorectal cancer—a multicentric analysis of a pre-screening tool for clinical application |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9058894/ https://www.ncbi.nlm.nih.gov/pubmed/35247870 http://dx.doi.org/10.1016/j.esmoop.2022.100400 |
work_keys_str_mv | AT echlea artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication AT ghaffarilalehn artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication AT quirkep artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication AT grabschhi artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication AT mutihs artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication AT saldanhaol artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication AT brockmoellersf artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication AT vandenbrandtpa artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication AT hutchinsgga artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication AT richmansd artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication AT horisbergerk artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication AT galatac artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication AT ebertmp artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication AT eckardtm artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication AT boutrosm artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication AT horstd artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication AT reissfelderc artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication AT alwerse artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication AT brinkertj artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication AT langerr artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication AT jenniskensjca artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication AT offermansk artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication AT muellerw artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication AT grayr artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication AT grubersb artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication AT greensonjk artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication AT rennertg artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication AT bonnerjd artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication AT schmolzed artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication AT changclaudej artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication AT brennerh artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication AT trautweinc artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication AT boorp artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication AT jaegerd artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication AT gaisant artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication AT hoffmeisterm artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication AT westnp artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication AT katherjn artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication |