Cargando…

Artificial intelligence for detection of microsatellite instability in colorectal cancer—a multicentric analysis of a pre-screening tool for clinical application

BACKGROUND: Microsatellite instability (MSI)/mismatch repair deficiency (dMMR) is a key genetic feature which should be tested in every patient with colorectal cancer (CRC) according to medical guidelines. Artificial intelligence (AI) methods can detect MSI/dMMR directly in routine pathology slides,...

Descripción completa

Detalles Bibliográficos
Autores principales: Echle, A., Ghaffari Laleh, N., Quirke, P., Grabsch, H.I., Muti, H.S., Saldanha, O.L., Brockmoeller, S.F., van den Brandt, P.A., Hutchins, G.G.A., Richman, S.D., Horisberger, K., Galata, C., Ebert, M.P., Eckardt, M., Boutros, M., Horst, D., Reissfelder, C., Alwers, E., Brinker, T.J., Langer, R., Jenniskens, J.C.A., Offermans, K., Mueller, W., Gray, R., Gruber, S.B., Greenson, J.K., Rennert, G., Bonner, J.D., Schmolze, D., Chang-Claude, J., Brenner, H., Trautwein, C., Boor, P., Jaeger, D., Gaisa, N.T., Hoffmeister, M., West, N.P., Kather, J.N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9058894/
https://www.ncbi.nlm.nih.gov/pubmed/35247870
http://dx.doi.org/10.1016/j.esmoop.2022.100400
_version_ 1784698210480029696
author Echle, A.
Ghaffari Laleh, N.
Quirke, P.
Grabsch, H.I.
Muti, H.S.
Saldanha, O.L.
Brockmoeller, S.F.
van den Brandt, P.A.
Hutchins, G.G.A.
Richman, S.D.
Horisberger, K.
Galata, C.
Ebert, M.P.
Eckardt, M.
Boutros, M.
Horst, D.
Reissfelder, C.
Alwers, E.
Brinker, T.J.
Langer, R.
Jenniskens, J.C.A.
Offermans, K.
Mueller, W.
Gray, R.
Gruber, S.B.
Greenson, J.K.
Rennert, G.
Bonner, J.D.
Schmolze, D.
Chang-Claude, J.
Brenner, H.
Trautwein, C.
Boor, P.
Jaeger, D.
Gaisa, N.T.
Hoffmeister, M.
West, N.P.
Kather, J.N.
author_facet Echle, A.
Ghaffari Laleh, N.
Quirke, P.
Grabsch, H.I.
Muti, H.S.
Saldanha, O.L.
Brockmoeller, S.F.
van den Brandt, P.A.
Hutchins, G.G.A.
Richman, S.D.
Horisberger, K.
Galata, C.
Ebert, M.P.
Eckardt, M.
Boutros, M.
Horst, D.
Reissfelder, C.
Alwers, E.
Brinker, T.J.
Langer, R.
Jenniskens, J.C.A.
Offermans, K.
Mueller, W.
Gray, R.
Gruber, S.B.
Greenson, J.K.
Rennert, G.
Bonner, J.D.
Schmolze, D.
Chang-Claude, J.
Brenner, H.
Trautwein, C.
Boor, P.
Jaeger, D.
Gaisa, N.T.
Hoffmeister, M.
West, N.P.
Kather, J.N.
author_sort Echle, A.
collection PubMed
description BACKGROUND: Microsatellite instability (MSI)/mismatch repair deficiency (dMMR) is a key genetic feature which should be tested in every patient with colorectal cancer (CRC) according to medical guidelines. Artificial intelligence (AI) methods can detect MSI/dMMR directly in routine pathology slides, but the test performance has not been systematically investigated with predefined test thresholds. METHOD: We trained and validated AI-based MSI/dMMR detectors and evaluated predefined performance metrics using nine patient cohorts of 8343 patients across different countries and ethnicities. RESULTS: Classifiers achieved clinical-grade performance, yielding an area under the receiver operating curve (AUROC) of up to 0.96 without using any manual annotations. Subsequently, we show that the AI system can be applied as a rule-out test: by using cohort-specific thresholds, on average 52.73% of tumors in each surgical cohort [total number of MSI/dMMR = 1020, microsatellite stable (MSS)/ proficient mismatch repair (pMMR) = 7323 patients] could be identified as MSS/pMMR with a fixed sensitivity at 95%. In an additional cohort of N = 1530 (MSI/dMMR = 211, MSS/pMMR = 1319) endoscopy biopsy samples, the system achieved an AUROC of 0.89, and the cohort-specific threshold ruled out 44.12% of tumors with a fixed sensitivity at 95%. As a more robust alternative to cohort-specific thresholds, we showed that with a fixed threshold of 0.25 for all the cohorts, we can rule-out 25.51% in surgical specimens and 6.10% in biopsies. INTERPRETATION: When applied in a clinical setting, this means that the AI system can rule out MSI/dMMR in a quarter (with global thresholds) or half of all CRC patients (with local fine-tuning), thereby reducing cost and turnaround time for molecular profiling.
format Online
Article
Text
id pubmed-9058894
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-90588942022-05-03 Artificial intelligence for detection of microsatellite instability in colorectal cancer—a multicentric analysis of a pre-screening tool for clinical application Echle, A. Ghaffari Laleh, N. Quirke, P. Grabsch, H.I. Muti, H.S. Saldanha, O.L. Brockmoeller, S.F. van den Brandt, P.A. Hutchins, G.G.A. Richman, S.D. Horisberger, K. Galata, C. Ebert, M.P. Eckardt, M. Boutros, M. Horst, D. Reissfelder, C. Alwers, E. Brinker, T.J. Langer, R. Jenniskens, J.C.A. Offermans, K. Mueller, W. Gray, R. Gruber, S.B. Greenson, J.K. Rennert, G. Bonner, J.D. Schmolze, D. Chang-Claude, J. Brenner, H. Trautwein, C. Boor, P. Jaeger, D. Gaisa, N.T. Hoffmeister, M. West, N.P. Kather, J.N. ESMO Open Original Research BACKGROUND: Microsatellite instability (MSI)/mismatch repair deficiency (dMMR) is a key genetic feature which should be tested in every patient with colorectal cancer (CRC) according to medical guidelines. Artificial intelligence (AI) methods can detect MSI/dMMR directly in routine pathology slides, but the test performance has not been systematically investigated with predefined test thresholds. METHOD: We trained and validated AI-based MSI/dMMR detectors and evaluated predefined performance metrics using nine patient cohorts of 8343 patients across different countries and ethnicities. RESULTS: Classifiers achieved clinical-grade performance, yielding an area under the receiver operating curve (AUROC) of up to 0.96 without using any manual annotations. Subsequently, we show that the AI system can be applied as a rule-out test: by using cohort-specific thresholds, on average 52.73% of tumors in each surgical cohort [total number of MSI/dMMR = 1020, microsatellite stable (MSS)/ proficient mismatch repair (pMMR) = 7323 patients] could be identified as MSS/pMMR with a fixed sensitivity at 95%. In an additional cohort of N = 1530 (MSI/dMMR = 211, MSS/pMMR = 1319) endoscopy biopsy samples, the system achieved an AUROC of 0.89, and the cohort-specific threshold ruled out 44.12% of tumors with a fixed sensitivity at 95%. As a more robust alternative to cohort-specific thresholds, we showed that with a fixed threshold of 0.25 for all the cohorts, we can rule-out 25.51% in surgical specimens and 6.10% in biopsies. INTERPRETATION: When applied in a clinical setting, this means that the AI system can rule out MSI/dMMR in a quarter (with global thresholds) or half of all CRC patients (with local fine-tuning), thereby reducing cost and turnaround time for molecular profiling. Elsevier 2022-03-02 /pmc/articles/PMC9058894/ /pubmed/35247870 http://dx.doi.org/10.1016/j.esmoop.2022.100400 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Original Research
Echle, A.
Ghaffari Laleh, N.
Quirke, P.
Grabsch, H.I.
Muti, H.S.
Saldanha, O.L.
Brockmoeller, S.F.
van den Brandt, P.A.
Hutchins, G.G.A.
Richman, S.D.
Horisberger, K.
Galata, C.
Ebert, M.P.
Eckardt, M.
Boutros, M.
Horst, D.
Reissfelder, C.
Alwers, E.
Brinker, T.J.
Langer, R.
Jenniskens, J.C.A.
Offermans, K.
Mueller, W.
Gray, R.
Gruber, S.B.
Greenson, J.K.
Rennert, G.
Bonner, J.D.
Schmolze, D.
Chang-Claude, J.
Brenner, H.
Trautwein, C.
Boor, P.
Jaeger, D.
Gaisa, N.T.
Hoffmeister, M.
West, N.P.
Kather, J.N.
Artificial intelligence for detection of microsatellite instability in colorectal cancer—a multicentric analysis of a pre-screening tool for clinical application
title Artificial intelligence for detection of microsatellite instability in colorectal cancer—a multicentric analysis of a pre-screening tool for clinical application
title_full Artificial intelligence for detection of microsatellite instability in colorectal cancer—a multicentric analysis of a pre-screening tool for clinical application
title_fullStr Artificial intelligence for detection of microsatellite instability in colorectal cancer—a multicentric analysis of a pre-screening tool for clinical application
title_full_unstemmed Artificial intelligence for detection of microsatellite instability in colorectal cancer—a multicentric analysis of a pre-screening tool for clinical application
title_short Artificial intelligence for detection of microsatellite instability in colorectal cancer—a multicentric analysis of a pre-screening tool for clinical application
title_sort artificial intelligence for detection of microsatellite instability in colorectal cancer—a multicentric analysis of a pre-screening tool for clinical application
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9058894/
https://www.ncbi.nlm.nih.gov/pubmed/35247870
http://dx.doi.org/10.1016/j.esmoop.2022.100400
work_keys_str_mv AT echlea artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication
AT ghaffarilalehn artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication
AT quirkep artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication
AT grabschhi artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication
AT mutihs artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication
AT saldanhaol artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication
AT brockmoellersf artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication
AT vandenbrandtpa artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication
AT hutchinsgga artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication
AT richmansd artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication
AT horisbergerk artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication
AT galatac artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication
AT ebertmp artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication
AT eckardtm artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication
AT boutrosm artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication
AT horstd artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication
AT reissfelderc artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication
AT alwerse artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication
AT brinkertj artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication
AT langerr artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication
AT jenniskensjca artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication
AT offermansk artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication
AT muellerw artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication
AT grayr artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication
AT grubersb artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication
AT greensonjk artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication
AT rennertg artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication
AT bonnerjd artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication
AT schmolzed artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication
AT changclaudej artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication
AT brennerh artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication
AT trautweinc artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication
AT boorp artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication
AT jaegerd artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication
AT gaisant artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication
AT hoffmeisterm artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication
AT westnp artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication
AT katherjn artificialintelligencefordetectionofmicrosatelliteinstabilityincolorectalcanceramulticentricanalysisofaprescreeningtoolforclinicalapplication