Cargando…
DAISM-DNN(XMBD): Highly accurate cell type proportion estimation with in silico data augmentation and deep neural networks
Understanding the immune cell abundance of cancer and other disease-related tissues has an important role in guiding disease treatments. Computational cell type proportion estimation methods have been previously developed to derive such information from bulk RNA sequencing data. Unfortunately, our r...
Autores principales: | Lin, Yating, Li, Haojun, Xiao, Xu, Zhang, Lei, Wang, Kejia, Zhao, Jingbo, Wang, Minshu, Zheng, Frank, Zhang, Minwei, Yang, Wenxian, Han, Jiahuai, Yu, Rongshan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9058910/ https://www.ncbi.nlm.nih.gov/pubmed/35510186 http://dx.doi.org/10.1016/j.patter.2022.100440 |
Ejemplares similares
-
Protocol to estimate cell type proportions from bulk RNA-seq using DAISM-DNN(XMBD)
por: Lin, Yating, et al.
Publicado: (2022) -
Dice-XMBD: Deep Learning-Based Cell Segmentation for Imaging Mass Cytometry
por: Xiao, Xu, et al.
Publicado: (2021) -
Deep representation features from DreamDIA(XMBD) improve the analysis of data-independent acquisition proteomics
por: Gao, Mingxuan, et al.
Publicado: (2021) -
Dear-DIA(XMBD): Deep Autoencoder Enables Deconvolution of Data-Independent Acquisition Proteomics
por: He, Qingzu, et al.
Publicado: (2023) -
DNN-MVL: DNN-Multi-View-Learning-Based Recover Block Missing Data in a Dam Safety Monitoring System
por: Mao, Yingchi, et al.
Publicado: (2019)