Cargando…
scTenifoldKnk: An efficient virtual knockout tool for gene function predictions via single-cell gene regulatory network perturbation
Gene knockout (KO) experiments are a proven, powerful approach for studying gene function. However, systematic KO experiments targeting a large number of genes are usually prohibitive due to the limit of experimental and animal resources. Here, we present scTenifoldKnk, an efficient virtual KO tool...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9058914/ https://www.ncbi.nlm.nih.gov/pubmed/35510185 http://dx.doi.org/10.1016/j.patter.2022.100434 |
_version_ | 1784698214834765824 |
---|---|
author | Osorio, Daniel Zhong, Yan Li, Guanxun Xu, Qian Yang, Yongjian Tian, Yanan Chapkin, Robert S. Huang, Jianhua Z. Cai, James J. |
author_facet | Osorio, Daniel Zhong, Yan Li, Guanxun Xu, Qian Yang, Yongjian Tian, Yanan Chapkin, Robert S. Huang, Jianhua Z. Cai, James J. |
author_sort | Osorio, Daniel |
collection | PubMed |
description | Gene knockout (KO) experiments are a proven, powerful approach for studying gene function. However, systematic KO experiments targeting a large number of genes are usually prohibitive due to the limit of experimental and animal resources. Here, we present scTenifoldKnk, an efficient virtual KO tool that enables systematic KO investigation of gene function using data from single-cell RNA sequencing (scRNA-seq). In scTenifoldKnk analysis, a gene regulatory network (GRN) is first constructed from scRNA-seq data of wild-type samples, and a target gene is then virtually deleted from the constructed GRN. Manifold alignment is used to align the resulting reduced GRN to the original GRN to identify differentially regulated genes, which are used to infer target gene functions in analyzed cells. We demonstrate that the scTenifoldKnk-based virtual KO analysis recapitulates the main findings of real-animal KO experiments and recovers the expected functions of genes in relevant cell types. |
format | Online Article Text |
id | pubmed-9058914 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-90589142022-05-03 scTenifoldKnk: An efficient virtual knockout tool for gene function predictions via single-cell gene regulatory network perturbation Osorio, Daniel Zhong, Yan Li, Guanxun Xu, Qian Yang, Yongjian Tian, Yanan Chapkin, Robert S. Huang, Jianhua Z. Cai, James J. Patterns (N Y) Article Gene knockout (KO) experiments are a proven, powerful approach for studying gene function. However, systematic KO experiments targeting a large number of genes are usually prohibitive due to the limit of experimental and animal resources. Here, we present scTenifoldKnk, an efficient virtual KO tool that enables systematic KO investigation of gene function using data from single-cell RNA sequencing (scRNA-seq). In scTenifoldKnk analysis, a gene regulatory network (GRN) is first constructed from scRNA-seq data of wild-type samples, and a target gene is then virtually deleted from the constructed GRN. Manifold alignment is used to align the resulting reduced GRN to the original GRN to identify differentially regulated genes, which are used to infer target gene functions in analyzed cells. We demonstrate that the scTenifoldKnk-based virtual KO analysis recapitulates the main findings of real-animal KO experiments and recovers the expected functions of genes in relevant cell types. Elsevier 2022-02-01 /pmc/articles/PMC9058914/ /pubmed/35510185 http://dx.doi.org/10.1016/j.patter.2022.100434 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Osorio, Daniel Zhong, Yan Li, Guanxun Xu, Qian Yang, Yongjian Tian, Yanan Chapkin, Robert S. Huang, Jianhua Z. Cai, James J. scTenifoldKnk: An efficient virtual knockout tool for gene function predictions via single-cell gene regulatory network perturbation |
title | scTenifoldKnk: An efficient virtual knockout tool for gene function predictions via single-cell gene regulatory network perturbation |
title_full | scTenifoldKnk: An efficient virtual knockout tool for gene function predictions via single-cell gene regulatory network perturbation |
title_fullStr | scTenifoldKnk: An efficient virtual knockout tool for gene function predictions via single-cell gene regulatory network perturbation |
title_full_unstemmed | scTenifoldKnk: An efficient virtual knockout tool for gene function predictions via single-cell gene regulatory network perturbation |
title_short | scTenifoldKnk: An efficient virtual knockout tool for gene function predictions via single-cell gene regulatory network perturbation |
title_sort | sctenifoldknk: an efficient virtual knockout tool for gene function predictions via single-cell gene regulatory network perturbation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9058914/ https://www.ncbi.nlm.nih.gov/pubmed/35510185 http://dx.doi.org/10.1016/j.patter.2022.100434 |
work_keys_str_mv | AT osoriodaniel sctenifoldknkanefficientvirtualknockouttoolforgenefunctionpredictionsviasinglecellgeneregulatorynetworkperturbation AT zhongyan sctenifoldknkanefficientvirtualknockouttoolforgenefunctionpredictionsviasinglecellgeneregulatorynetworkperturbation AT liguanxun sctenifoldknkanefficientvirtualknockouttoolforgenefunctionpredictionsviasinglecellgeneregulatorynetworkperturbation AT xuqian sctenifoldknkanefficientvirtualknockouttoolforgenefunctionpredictionsviasinglecellgeneregulatorynetworkperturbation AT yangyongjian sctenifoldknkanefficientvirtualknockouttoolforgenefunctionpredictionsviasinglecellgeneregulatorynetworkperturbation AT tianyanan sctenifoldknkanefficientvirtualknockouttoolforgenefunctionpredictionsviasinglecellgeneregulatorynetworkperturbation AT chapkinroberts sctenifoldknkanefficientvirtualknockouttoolforgenefunctionpredictionsviasinglecellgeneregulatorynetworkperturbation AT huangjianhuaz sctenifoldknkanefficientvirtualknockouttoolforgenefunctionpredictionsviasinglecellgeneregulatorynetworkperturbation AT caijamesj sctenifoldknkanefficientvirtualknockouttoolforgenefunctionpredictionsviasinglecellgeneregulatorynetworkperturbation |