Cargando…

scTenifoldKnk: An efficient virtual knockout tool for gene function predictions via single-cell gene regulatory network perturbation

Gene knockout (KO) experiments are a proven, powerful approach for studying gene function. However, systematic KO experiments targeting a large number of genes are usually prohibitive due to the limit of experimental and animal resources. Here, we present scTenifoldKnk, an efficient virtual KO tool...

Descripción completa

Detalles Bibliográficos
Autores principales: Osorio, Daniel, Zhong, Yan, Li, Guanxun, Xu, Qian, Yang, Yongjian, Tian, Yanan, Chapkin, Robert S., Huang, Jianhua Z., Cai, James J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9058914/
https://www.ncbi.nlm.nih.gov/pubmed/35510185
http://dx.doi.org/10.1016/j.patter.2022.100434
_version_ 1784698214834765824
author Osorio, Daniel
Zhong, Yan
Li, Guanxun
Xu, Qian
Yang, Yongjian
Tian, Yanan
Chapkin, Robert S.
Huang, Jianhua Z.
Cai, James J.
author_facet Osorio, Daniel
Zhong, Yan
Li, Guanxun
Xu, Qian
Yang, Yongjian
Tian, Yanan
Chapkin, Robert S.
Huang, Jianhua Z.
Cai, James J.
author_sort Osorio, Daniel
collection PubMed
description Gene knockout (KO) experiments are a proven, powerful approach for studying gene function. However, systematic KO experiments targeting a large number of genes are usually prohibitive due to the limit of experimental and animal resources. Here, we present scTenifoldKnk, an efficient virtual KO tool that enables systematic KO investigation of gene function using data from single-cell RNA sequencing (scRNA-seq). In scTenifoldKnk analysis, a gene regulatory network (GRN) is first constructed from scRNA-seq data of wild-type samples, and a target gene is then virtually deleted from the constructed GRN. Manifold alignment is used to align the resulting reduced GRN to the original GRN to identify differentially regulated genes, which are used to infer target gene functions in analyzed cells. We demonstrate that the scTenifoldKnk-based virtual KO analysis recapitulates the main findings of real-animal KO experiments and recovers the expected functions of genes in relevant cell types.
format Online
Article
Text
id pubmed-9058914
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-90589142022-05-03 scTenifoldKnk: An efficient virtual knockout tool for gene function predictions via single-cell gene regulatory network perturbation Osorio, Daniel Zhong, Yan Li, Guanxun Xu, Qian Yang, Yongjian Tian, Yanan Chapkin, Robert S. Huang, Jianhua Z. Cai, James J. Patterns (N Y) Article Gene knockout (KO) experiments are a proven, powerful approach for studying gene function. However, systematic KO experiments targeting a large number of genes are usually prohibitive due to the limit of experimental and animal resources. Here, we present scTenifoldKnk, an efficient virtual KO tool that enables systematic KO investigation of gene function using data from single-cell RNA sequencing (scRNA-seq). In scTenifoldKnk analysis, a gene regulatory network (GRN) is first constructed from scRNA-seq data of wild-type samples, and a target gene is then virtually deleted from the constructed GRN. Manifold alignment is used to align the resulting reduced GRN to the original GRN to identify differentially regulated genes, which are used to infer target gene functions in analyzed cells. We demonstrate that the scTenifoldKnk-based virtual KO analysis recapitulates the main findings of real-animal KO experiments and recovers the expected functions of genes in relevant cell types. Elsevier 2022-02-01 /pmc/articles/PMC9058914/ /pubmed/35510185 http://dx.doi.org/10.1016/j.patter.2022.100434 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Osorio, Daniel
Zhong, Yan
Li, Guanxun
Xu, Qian
Yang, Yongjian
Tian, Yanan
Chapkin, Robert S.
Huang, Jianhua Z.
Cai, James J.
scTenifoldKnk: An efficient virtual knockout tool for gene function predictions via single-cell gene regulatory network perturbation
title scTenifoldKnk: An efficient virtual knockout tool for gene function predictions via single-cell gene regulatory network perturbation
title_full scTenifoldKnk: An efficient virtual knockout tool for gene function predictions via single-cell gene regulatory network perturbation
title_fullStr scTenifoldKnk: An efficient virtual knockout tool for gene function predictions via single-cell gene regulatory network perturbation
title_full_unstemmed scTenifoldKnk: An efficient virtual knockout tool for gene function predictions via single-cell gene regulatory network perturbation
title_short scTenifoldKnk: An efficient virtual knockout tool for gene function predictions via single-cell gene regulatory network perturbation
title_sort sctenifoldknk: an efficient virtual knockout tool for gene function predictions via single-cell gene regulatory network perturbation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9058914/
https://www.ncbi.nlm.nih.gov/pubmed/35510185
http://dx.doi.org/10.1016/j.patter.2022.100434
work_keys_str_mv AT osoriodaniel sctenifoldknkanefficientvirtualknockouttoolforgenefunctionpredictionsviasinglecellgeneregulatorynetworkperturbation
AT zhongyan sctenifoldknkanefficientvirtualknockouttoolforgenefunctionpredictionsviasinglecellgeneregulatorynetworkperturbation
AT liguanxun sctenifoldknkanefficientvirtualknockouttoolforgenefunctionpredictionsviasinglecellgeneregulatorynetworkperturbation
AT xuqian sctenifoldknkanefficientvirtualknockouttoolforgenefunctionpredictionsviasinglecellgeneregulatorynetworkperturbation
AT yangyongjian sctenifoldknkanefficientvirtualknockouttoolforgenefunctionpredictionsviasinglecellgeneregulatorynetworkperturbation
AT tianyanan sctenifoldknkanefficientvirtualknockouttoolforgenefunctionpredictionsviasinglecellgeneregulatorynetworkperturbation
AT chapkinroberts sctenifoldknkanefficientvirtualknockouttoolforgenefunctionpredictionsviasinglecellgeneregulatorynetworkperturbation
AT huangjianhuaz sctenifoldknkanefficientvirtualknockouttoolforgenefunctionpredictionsviasinglecellgeneregulatorynetworkperturbation
AT caijamesj sctenifoldknkanefficientvirtualknockouttoolforgenefunctionpredictionsviasinglecellgeneregulatorynetworkperturbation