Cargando…
scTenifoldKnk: An efficient virtual knockout tool for gene function predictions via single-cell gene regulatory network perturbation
Gene knockout (KO) experiments are a proven, powerful approach for studying gene function. However, systematic KO experiments targeting a large number of genes are usually prohibitive due to the limit of experimental and animal resources. Here, we present scTenifoldKnk, an efficient virtual KO tool...
Autores principales: | Osorio, Daniel, Zhong, Yan, Li, Guanxun, Xu, Qian, Yang, Yongjian, Tian, Yanan, Chapkin, Robert S., Huang, Jianhua Z., Cai, James J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9058914/ https://www.ncbi.nlm.nih.gov/pubmed/35510185 http://dx.doi.org/10.1016/j.patter.2022.100434 |
Ejemplares similares
-
scTenifoldNet: A Machine Learning Workflow for Constructing and Comparing Transcriptome-wide Gene Regulatory Networks from Single-Cell Data
por: Osorio, Daniel, et al.
Publicado: (2020) -
Gene knockout inference with variational graph autoencoder learning single-cell gene regulatory networks
por: Yang, Yongjian, et al.
Publicado: (2023) -
Test of In-core Flux Detectors in KNK II
por: Hoppe, P, et al.
Publicado: (1979) -
scInTime: A Computational Method Leveraging Single-Cell Trajectory and Gene Regulatory Networks to Identify Master Regulators of Cellular Differentiation
por: Xu, Qian, et al.
Publicado: (2022) -
Improved Reconstruction of In Silico Gene Regulatory Networks by Integrating Knockout and Perturbation Data
por: Yip, Kevin Y., et al.
Publicado: (2010)