Cargando…

Privacy-preserving local analysis of digital trace data: A proof-of-concept

We present PORT, a software platform for local data extraction and analysis of digital trace data. While digital trace data hold huge potential for social-scientific discovery, their most useful parts have been unattainable for scientists because of privacy concerns and prohibitive access to applica...

Descripción completa

Detalles Bibliográficos
Autores principales: Boeschoten, Laura, Mendrik, Adriënne, van der Veen, Emiel, Vloothuis, Jeroen, Hu, Haili, Voorvaart, Roos, Oberski, Daniel L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9058917/
https://www.ncbi.nlm.nih.gov/pubmed/35510190
http://dx.doi.org/10.1016/j.patter.2022.100444
_version_ 1784698215591837696
author Boeschoten, Laura
Mendrik, Adriënne
van der Veen, Emiel
Vloothuis, Jeroen
Hu, Haili
Voorvaart, Roos
Oberski, Daniel L.
author_facet Boeschoten, Laura
Mendrik, Adriënne
van der Veen, Emiel
Vloothuis, Jeroen
Hu, Haili
Voorvaart, Roos
Oberski, Daniel L.
author_sort Boeschoten, Laura
collection PubMed
description We present PORT, a software platform for local data extraction and analysis of digital trace data. While digital trace data hold huge potential for social-scientific discovery, their most useful parts have been unattainable for scientists because of privacy concerns and prohibitive access to application programming interfaces. Recently, a workflow was introduced allowing citizens to donate their digital traces to scientists. In this workflow, citizens’ digital traces are processed locally on their machines before providing informed consent to share a subset of the data with researchers. In this paper, we present the newly developed software PORT that implements the local processing part of this workflow, protecting privacy by shielding sensitive data from outside observers, including the researchers themselves. When using PORT, researchers can tailor the local processing procedure suitable to the data download package and research question. Thus, PORT enables a host of potential applications of social data science to hitherto unobtainable data.
format Online
Article
Text
id pubmed-9058917
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-90589172022-05-03 Privacy-preserving local analysis of digital trace data: A proof-of-concept Boeschoten, Laura Mendrik, Adriënne van der Veen, Emiel Vloothuis, Jeroen Hu, Haili Voorvaart, Roos Oberski, Daniel L. Patterns (N Y) Descriptor We present PORT, a software platform for local data extraction and analysis of digital trace data. While digital trace data hold huge potential for social-scientific discovery, their most useful parts have been unattainable for scientists because of privacy concerns and prohibitive access to application programming interfaces. Recently, a workflow was introduced allowing citizens to donate their digital traces to scientists. In this workflow, citizens’ digital traces are processed locally on their machines before providing informed consent to share a subset of the data with researchers. In this paper, we present the newly developed software PORT that implements the local processing part of this workflow, protecting privacy by shielding sensitive data from outside observers, including the researchers themselves. When using PORT, researchers can tailor the local processing procedure suitable to the data download package and research question. Thus, PORT enables a host of potential applications of social data science to hitherto unobtainable data. Elsevier 2022-02-08 /pmc/articles/PMC9058917/ /pubmed/35510190 http://dx.doi.org/10.1016/j.patter.2022.100444 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Descriptor
Boeschoten, Laura
Mendrik, Adriënne
van der Veen, Emiel
Vloothuis, Jeroen
Hu, Haili
Voorvaart, Roos
Oberski, Daniel L.
Privacy-preserving local analysis of digital trace data: A proof-of-concept
title Privacy-preserving local analysis of digital trace data: A proof-of-concept
title_full Privacy-preserving local analysis of digital trace data: A proof-of-concept
title_fullStr Privacy-preserving local analysis of digital trace data: A proof-of-concept
title_full_unstemmed Privacy-preserving local analysis of digital trace data: A proof-of-concept
title_short Privacy-preserving local analysis of digital trace data: A proof-of-concept
title_sort privacy-preserving local analysis of digital trace data: a proof-of-concept
topic Descriptor
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9058917/
https://www.ncbi.nlm.nih.gov/pubmed/35510190
http://dx.doi.org/10.1016/j.patter.2022.100444
work_keys_str_mv AT boeschotenlaura privacypreservinglocalanalysisofdigitaltracedataaproofofconcept
AT mendrikadrienne privacypreservinglocalanalysisofdigitaltracedataaproofofconcept
AT vanderveenemiel privacypreservinglocalanalysisofdigitaltracedataaproofofconcept
AT vloothuisjeroen privacypreservinglocalanalysisofdigitaltracedataaproofofconcept
AT huhaili privacypreservinglocalanalysisofdigitaltracedataaproofofconcept
AT voorvaartroos privacypreservinglocalanalysisofdigitaltracedataaproofofconcept
AT oberskidaniell privacypreservinglocalanalysisofdigitaltracedataaproofofconcept