Cargando…
Robust importance sampling for error estimation in the context of optimal Bayesian transfer learning
Classification has been a major task for building intelligent systems because it enables decision-making under uncertainty. Classifier design aims at building models from training data for representing feature-label distributions—either explicitly or implicitly. In many scientific or clinical settin...
Autores principales: | Maddouri, Omar, Qian, Xiaoning, Alexander, Francis J., Dougherty, Edward R., Yoon, Byung-Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9058919/ https://www.ncbi.nlm.nih.gov/pubmed/35510184 http://dx.doi.org/10.1016/j.patter.2021.100428 |
Ejemplares similares
-
Synthetic data for design and evaluation of binary classifiers in the context of Bayesian transfer learning
por: Maddouri, Omar, et al.
Publicado: (2022) -
Robust Relative Error Estimation
por: Hirose, Kei, et al.
Publicado: (2018) -
On Default Priors for Robust Bayesian Estimation with Divergences
por: Nakagawa, Tomoyuki, et al.
Publicado: (2020) -
Scalable optimal Bayesian classification of single-cell trajectories under regulatory model uncertainty
por: Hajiramezanali, Ehsan, et al.
Publicado: (2019) -
Bayesian Species Delimitation Can Be Robust to Guide-Tree Inference Errors
por: Zhang, Chi, et al.
Publicado: (2014)