Cargando…
EMBEDR: Distinguishing signal from noise in single-cell omics data
Single-cell “omics”-based measurements are often high dimensional so that dimensionality reduction (DR) algorithms are necessary for data visualization and analysis. The lack of methods for separating signal from noise in DR outputs has limited their utility in generating data-driven discoveries in...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9058925/ https://www.ncbi.nlm.nih.gov/pubmed/35510181 http://dx.doi.org/10.1016/j.patter.2022.100443 |
_version_ | 1784698217270607872 |
---|---|
author | Johnson, Eric M. Kath, William Mani, Madhav |
author_facet | Johnson, Eric M. Kath, William Mani, Madhav |
author_sort | Johnson, Eric M. |
collection | PubMed |
description | Single-cell “omics”-based measurements are often high dimensional so that dimensionality reduction (DR) algorithms are necessary for data visualization and analysis. The lack of methods for separating signal from noise in DR outputs has limited their utility in generating data-driven discoveries in single-cell data. In this work we present EMBEDR, which assesses the output of any DR algorithm to distinguish evidence of structure from algorithm-induced noise in DR outputs. We apply EMBEDR to DR-generated representations of single-cell omics data of several modalities to show where they visually show real—not spurious—structure. EMBEDR generates a “p” value for each sample, allowing for direct comparisons of DR algorithms and facilitating optimization of algorithm hyperparameters. We show that the scale of a sample’s neighborhood can thus be determined and used to generate a novel “cell-wise optimal” embedding. EMBEDR is available as a Python package for immediate use. |
format | Online Article Text |
id | pubmed-9058925 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-90589252022-05-03 EMBEDR: Distinguishing signal from noise in single-cell omics data Johnson, Eric M. Kath, William Mani, Madhav Patterns (N Y) Article Single-cell “omics”-based measurements are often high dimensional so that dimensionality reduction (DR) algorithms are necessary for data visualization and analysis. The lack of methods for separating signal from noise in DR outputs has limited their utility in generating data-driven discoveries in single-cell data. In this work we present EMBEDR, which assesses the output of any DR algorithm to distinguish evidence of structure from algorithm-induced noise in DR outputs. We apply EMBEDR to DR-generated representations of single-cell omics data of several modalities to show where they visually show real—not spurious—structure. EMBEDR generates a “p” value for each sample, allowing for direct comparisons of DR algorithms and facilitating optimization of algorithm hyperparameters. We show that the scale of a sample’s neighborhood can thus be determined and used to generate a novel “cell-wise optimal” embedding. EMBEDR is available as a Python package for immediate use. Elsevier 2022-02-08 /pmc/articles/PMC9058925/ /pubmed/35510181 http://dx.doi.org/10.1016/j.patter.2022.100443 Text en © 2022 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Johnson, Eric M. Kath, William Mani, Madhav EMBEDR: Distinguishing signal from noise in single-cell omics data |
title | EMBEDR: Distinguishing signal from noise in single-cell omics data |
title_full | EMBEDR: Distinguishing signal from noise in single-cell omics data |
title_fullStr | EMBEDR: Distinguishing signal from noise in single-cell omics data |
title_full_unstemmed | EMBEDR: Distinguishing signal from noise in single-cell omics data |
title_short | EMBEDR: Distinguishing signal from noise in single-cell omics data |
title_sort | embedr: distinguishing signal from noise in single-cell omics data |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9058925/ https://www.ncbi.nlm.nih.gov/pubmed/35510181 http://dx.doi.org/10.1016/j.patter.2022.100443 |
work_keys_str_mv | AT johnsonericm embedrdistinguishingsignalfromnoiseinsinglecellomicsdata AT kathwilliam embedrdistinguishingsignalfromnoiseinsinglecellomicsdata AT manimadhav embedrdistinguishingsignalfromnoiseinsinglecellomicsdata |