Cargando…
EMBEDR: Distinguishing signal from noise in single-cell omics data
Single-cell “omics”-based measurements are often high dimensional so that dimensionality reduction (DR) algorithms are necessary for data visualization and analysis. The lack of methods for separating signal from noise in DR outputs has limited their utility in generating data-driven discoveries in...
Autores principales: | Johnson, Eric M., Kath, William, Mani, Madhav |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9058925/ https://www.ncbi.nlm.nih.gov/pubmed/35510181 http://dx.doi.org/10.1016/j.patter.2022.100443 |
Ejemplares similares
-
Beyond Benford's Law: Distinguishing Noise from Chaos
por: Li, Qinglei, et al.
Publicado: (2015) -
Characterizing noise structure in single-cell RNA-seq distinguishes genuine from technical stochastic allelic expression
por: Kim, Jong Kyoung, et al.
Publicado: (2015) -
Corrigendum: Characterizing noise structure in single-cell RNA-seq distinguishes genuine from technical stochastic allelic expression
por: Kim, Jong Kyoung, et al.
Publicado: (2016) -
Mapping gene regulatory networks from single-cell omics data
por: Fiers, Mark W E J, et al.
Publicado: (2018) -
Signal and noise in metabarcoding data
por: Gold, Zachary, et al.
Publicado: (2023)