Cargando…
Gradient tree boosting and network propagation for the identification of pan-cancer survival networks
Cancer survival prediction is typically done with uninterpretable machine learning techniques, e.g., gradient tree boosting. Therefore, additional steps are needed to infer biological plausibility of the predictions. Here, we describe a protocol that combines pan-cancer survival prediction with XGBo...
Autores principales: | Thedinga, Kristina, Herwig, Ralf |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9059156/ https://www.ncbi.nlm.nih.gov/pubmed/35509973 http://dx.doi.org/10.1016/j.xpro.2022.101353 |
Ejemplares similares
-
A gradient tree boosting and network propagation derived pan-cancer survival network of the tumor microenvironment
por: Thedinga, Kristina, et al.
Publicado: (2021) -
Pre-Training on In Vitro and Fine-Tuning on Patient-Derived Data Improves Deep Neural Networks for Anti-Cancer Drug-Sensitivity Prediction
por: Prasse, Paul, et al.
Publicado: (2022) -
Matching anticancer compounds and tumor cell lines by neural networks with ranking loss
por: Prasse, Paul, et al.
Publicado: (2022) -
Identification of cyclin protein using gradient boost decision tree algorithm
por: Zulfiqar, Hasan, et al.
Publicado: (2021) -
Large-Scale Gastric Cancer Susceptibility Gene Identification Based on Gradient Boosting Decision Tree
por: Chen, Qing, et al.
Publicado: (2022)