Cargando…

The regeneration of Fe-EDTA denitration solutions by nanoscale zero-valent iron

Fe(ii) ethylenediaminetetraacetate (EDTA) chelate solution is generally considered to be an effective nitric oxide (NO) absorbent. However, since the ferrous active site is occupied by nitric oxide and the ferrous chelate is oxidized to ferric chelate by oxygen in air, its absorption capacity will g...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiang, Wei, Wang, Xiaolong, Xu, Qiang, Xiao, Jianbai, Wei, Xionghui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9059285/
https://www.ncbi.nlm.nih.gov/pubmed/35521621
http://dx.doi.org/10.1039/c8ra08992b
Descripción
Sumario:Fe(ii) ethylenediaminetetraacetate (EDTA) chelate solution is generally considered to be an effective nitric oxide (NO) absorbent. However, since the ferrous active site is occupied by nitric oxide and the ferrous chelate is oxidized to ferric chelate by oxygen in air, its absorption capacity will gradually decrease with the NO absorption process. Here, we propose a method for regenerating the NO-attenuated Fe(ii)EDTA solution by adding nanoscale zero-valent iron (NZVI) under three different pH conditions. Furthermore, compared with the commercially available iron powder, NZVI was also found to be effective not only for the regeneration of expired Fe-EDTA solution but also for the reduction of Fe(iii) EDTA solution. According to the results obtained herein, different acidity levels of solution, from weakly acidic to near neutral, are all suitable for the regeneration–absorption process.