Cargando…

Self-organized nanocrystal rings formed by microemulsion for selective recognition of proteins and immunoassays

A simple and cheap method to fabricate a nanocrystal ring pattern was developed by utilization of a microemulsion in this study. The mixture of polystyrene and stabilizer dichloromethane solution that contained nanocrystal aqueous solution, prepared through shaking, was applied to fabricate a revers...

Descripción completa

Detalles Bibliográficos
Autores principales: Liang, Jing, Yu, Lei, Lin, Ziying, Song, Keji, Zhang, Jiejing, Zhang, Jianfeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9059482/
https://www.ncbi.nlm.nih.gov/pubmed/35517599
http://dx.doi.org/10.1039/c8ra09662g
Descripción
Sumario:A simple and cheap method to fabricate a nanocrystal ring pattern was developed by utilization of a microemulsion in this study. The mixture of polystyrene and stabilizer dichloromethane solution that contained nanocrystal aqueous solution, prepared through shaking, was applied to fabricate a reverse microemulsion. After spreading and evaporating the solvent of microemulsion on a glass slide, an ordered honeycomb film was produced, accompanied by the formation of a nanocrystal ring pattern. The nanocrystal pattern could be readily applied for immunoassays and recognition of proteins. The pattern with antibody marked by a green colored nanocrystal specifically bound with antigen labeled by a red colored nanocrystal, leading to the enhancement in red fluorescent ring pattern and decrease in green fluorescent pattern. When the unlabeled antigen was added, the green fluorescent pattern was recovered. In addition, the ring pattern with immunocomplex could selectively recognize antigen and transferrin proteins. This strategy reveals that these patterns have potential applications in biochips, biosensors, imaging analysis and so forth.