Cargando…

Combretastatin A4-camptothecin micelles as combination therapy for effective anticancer activity

Cancer is a major worldwide health problem, for which chemotherapy is a common treatment option. However drug toxicity and the development of resistance to chemotherapy are two main challenges associated with the traditional anticancer drugs. Combined pharmacological therapy based on different mecha...

Descripción completa

Detalles Bibliográficos
Autores principales: Assali, Mohyeddin, Kittana, Naim, Qasem, Sahar Alhaj, Adas, Raghad, Saleh, Doaa, Arar, Asala, Zohud, Osayd
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9059504/
https://www.ncbi.nlm.nih.gov/pubmed/35517625
http://dx.doi.org/10.1039/c8ra08794f
_version_ 1784698326126428160
author Assali, Mohyeddin
Kittana, Naim
Qasem, Sahar Alhaj
Adas, Raghad
Saleh, Doaa
Arar, Asala
Zohud, Osayd
author_facet Assali, Mohyeddin
Kittana, Naim
Qasem, Sahar Alhaj
Adas, Raghad
Saleh, Doaa
Arar, Asala
Zohud, Osayd
author_sort Assali, Mohyeddin
collection PubMed
description Cancer is a major worldwide health problem, for which chemotherapy is a common treatment option. However drug toxicity and the development of resistance to chemotherapy are two main challenges associated with the traditional anticancer drugs. Combined pharmacological therapy based on different mechanisms might be an effective strategy in cancer treatment, and could exhibit a synergistic therapeutic efficacy. Herein, we aim to combine combretastatin A4 (CA4) and camptothecin (Cpt) chemically into a codrug through two hydrophilic linkers utilizing click chemistry to improve their water solubility and anticancer activity. The synthesized amphiphilic structure could self-assemble into a micelle structure as confirmed by atomic force microscopy (AFM) and dynamic light scattering (DLS), which showed a high stability and improved water solubility at pH 7.4, with a low critical micelle concentration (CMC) value of 0.9 mM. Moreover, in vitro hydrolysis was observed upon incubation of the hybrid compound with an esterase enzyme, which suggested a complete disassembly into the starting active drugs. Finally, cytotoxicity studies on HeLa cancer cells showed that the codrug demonstrated an enhanced (five fold) cytotoxicity as compared with the free drugs. In addition the combination index (CI) was <1, which suggests a synergistic activity for the codrug. Moreover, the tested concentrations of the codrug were not significantly cytotoxic to a noncancerous fibroblast cell line. The imaging of HeLa cells treated with FITC-loaded micelles showed a rapid internalization. In conclusion, the codrug of CA4 and Cpt might be a potential novel anticancer drug as it demonstrated a synergistic cytotoxic activity that might spare noncancerous cells.
format Online
Article
Text
id pubmed-9059504
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-90595042022-05-04 Combretastatin A4-camptothecin micelles as combination therapy for effective anticancer activity Assali, Mohyeddin Kittana, Naim Qasem, Sahar Alhaj Adas, Raghad Saleh, Doaa Arar, Asala Zohud, Osayd RSC Adv Chemistry Cancer is a major worldwide health problem, for which chemotherapy is a common treatment option. However drug toxicity and the development of resistance to chemotherapy are two main challenges associated with the traditional anticancer drugs. Combined pharmacological therapy based on different mechanisms might be an effective strategy in cancer treatment, and could exhibit a synergistic therapeutic efficacy. Herein, we aim to combine combretastatin A4 (CA4) and camptothecin (Cpt) chemically into a codrug through two hydrophilic linkers utilizing click chemistry to improve their water solubility and anticancer activity. The synthesized amphiphilic structure could self-assemble into a micelle structure as confirmed by atomic force microscopy (AFM) and dynamic light scattering (DLS), which showed a high stability and improved water solubility at pH 7.4, with a low critical micelle concentration (CMC) value of 0.9 mM. Moreover, in vitro hydrolysis was observed upon incubation of the hybrid compound with an esterase enzyme, which suggested a complete disassembly into the starting active drugs. Finally, cytotoxicity studies on HeLa cancer cells showed that the codrug demonstrated an enhanced (five fold) cytotoxicity as compared with the free drugs. In addition the combination index (CI) was <1, which suggests a synergistic activity for the codrug. Moreover, the tested concentrations of the codrug were not significantly cytotoxic to a noncancerous fibroblast cell line. The imaging of HeLa cells treated with FITC-loaded micelles showed a rapid internalization. In conclusion, the codrug of CA4 and Cpt might be a potential novel anticancer drug as it demonstrated a synergistic cytotoxic activity that might spare noncancerous cells. The Royal Society of Chemistry 2019-01-09 /pmc/articles/PMC9059504/ /pubmed/35517625 http://dx.doi.org/10.1039/c8ra08794f Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/
spellingShingle Chemistry
Assali, Mohyeddin
Kittana, Naim
Qasem, Sahar Alhaj
Adas, Raghad
Saleh, Doaa
Arar, Asala
Zohud, Osayd
Combretastatin A4-camptothecin micelles as combination therapy for effective anticancer activity
title Combretastatin A4-camptothecin micelles as combination therapy for effective anticancer activity
title_full Combretastatin A4-camptothecin micelles as combination therapy for effective anticancer activity
title_fullStr Combretastatin A4-camptothecin micelles as combination therapy for effective anticancer activity
title_full_unstemmed Combretastatin A4-camptothecin micelles as combination therapy for effective anticancer activity
title_short Combretastatin A4-camptothecin micelles as combination therapy for effective anticancer activity
title_sort combretastatin a4-camptothecin micelles as combination therapy for effective anticancer activity
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9059504/
https://www.ncbi.nlm.nih.gov/pubmed/35517625
http://dx.doi.org/10.1039/c8ra08794f
work_keys_str_mv AT assalimohyeddin combretastatina4camptothecinmicellesascombinationtherapyforeffectiveanticanceractivity
AT kittananaim combretastatina4camptothecinmicellesascombinationtherapyforeffectiveanticanceractivity
AT qasemsaharalhaj combretastatina4camptothecinmicellesascombinationtherapyforeffectiveanticanceractivity
AT adasraghad combretastatina4camptothecinmicellesascombinationtherapyforeffectiveanticanceractivity
AT salehdoaa combretastatina4camptothecinmicellesascombinationtherapyforeffectiveanticanceractivity
AT ararasala combretastatina4camptothecinmicellesascombinationtherapyforeffectiveanticanceractivity
AT zohudosayd combretastatina4camptothecinmicellesascombinationtherapyforeffectiveanticanceractivity