Cargando…
An empirical study of preprocessing techniques with convolutional neural networks for accurate detection of chronic ocular diseases using fundus images
Chronic Ocular Diseases (COD) such as myopia, diabetic retinopathy, age-related macular degeneration, glaucoma, and cataract can affect the eye and may even lead to severe vision impairment or blindness. According to a recent World Health Organization (WHO) report on vision, at least 2.2 billion ind...
Autores principales: | Mayya, Veena, S, Sowmya Kamath, Kulkarni, Uma, Surya, Divyalakshmi Kaiyoor, Acharya, U Rajendra |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9059700/ https://www.ncbi.nlm.nih.gov/pubmed/35528131 http://dx.doi.org/10.1007/s10489-022-03490-8 |
Ejemplares similares
-
Multi-Scale Convolutional Neural Network for Accurate Corneal Segmentation in Early Detection of Fungal Keratitis
por: Mayya, Veena, et al.
Publicado: (2021) -
Application of a deep convolutional neural network in the diagnosis of neonatal ocular fundus hemorrhage
por: Wang, Binbin, et al.
Publicado: (2018) -
Combining convolutional neural networks and self-attention for fundus diseases identification
por: Wang, Keya, et al.
Publicado: (2023) -
Multiple Preprocessing Hybrid Level Set Model for Optic Disc Segmentation in Fundus Images
por: Xue, Xiaozhong, et al.
Publicado: (2022) -
Content-based medical image retrieval system for lung diseases using deep CNNs
por: Agrawal, Shubham, et al.
Publicado: (2022)