Cargando…

Diameter-definable tubing-microchips for applications in both continuous-flow and TEC-modulated on-chip qPCRs with reaction signal analyzed between different types of Teflon-polymers: PTFE and FEP

Recently, the tubing microfluidic system has attracted significant research interest because it waives complicated microfabrication machineries and bonding procedures during the manufacture of microchips; however, due to the limited dimensions in the market, the commercially available micro-tubes ar...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiang, Yangyang, Wu, Guizhu, Li, Yuanming, Wu, Wenming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9059869/
https://www.ncbi.nlm.nih.gov/pubmed/35520483
http://dx.doi.org/10.1039/c8ra09773a
_version_ 1784698395643871232
author Jiang, Yangyang
Wu, Guizhu
Li, Yuanming
Wu, Wenming
author_facet Jiang, Yangyang
Wu, Guizhu
Li, Yuanming
Wu, Wenming
author_sort Jiang, Yangyang
collection PubMed
description Recently, the tubing microfluidic system has attracted significant research interest because it waives complicated microfabrication machineries and bonding procedures during the manufacture of microchips; however, due to the limited dimensions in the market, the commercially available micro-tubes are generally fixed in diameters and are unmodifiable in radius; this makes it a challenge to obtain a randomly defined channel-dimension for a tubing microsystem. To solve this problem, herein, we proposed a novel and simple method to obtain a tubing-channel with gradually changed diameter. Both the tensile forces and spectrophotometric properties have been analyzed in this study for systemic characterization; as a proof-of-concept, the inner diameter (ID) of a fluorinated ethylene propylene (FEP) tube has been modified from 0.5 mm to 0.3 mm, and the FEP tube has been further applied to both the thermoelectric (TEC)-modulated on-chip polymerase chain reactions (PCRs) and the continuous flow on-chip PCRs. To the best of our knowledge, this is the first time that an FEP tube with so small ID has been applied to on-chip qPCRs. Based on the comparison with polytetrafluoroethylene (PTFE) regarding the fluorescence signal inside the tube, it can be verified that FEP has much better detection sensitivity than PTFE although these two materials are reckoned to be belonging to the same type of polymer family, generally referred to as Teflon.
format Online
Article
Text
id pubmed-9059869
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-90598692022-05-04 Diameter-definable tubing-microchips for applications in both continuous-flow and TEC-modulated on-chip qPCRs with reaction signal analyzed between different types of Teflon-polymers: PTFE and FEP Jiang, Yangyang Wu, Guizhu Li, Yuanming Wu, Wenming RSC Adv Chemistry Recently, the tubing microfluidic system has attracted significant research interest because it waives complicated microfabrication machineries and bonding procedures during the manufacture of microchips; however, due to the limited dimensions in the market, the commercially available micro-tubes are generally fixed in diameters and are unmodifiable in radius; this makes it a challenge to obtain a randomly defined channel-dimension for a tubing microsystem. To solve this problem, herein, we proposed a novel and simple method to obtain a tubing-channel with gradually changed diameter. Both the tensile forces and spectrophotometric properties have been analyzed in this study for systemic characterization; as a proof-of-concept, the inner diameter (ID) of a fluorinated ethylene propylene (FEP) tube has been modified from 0.5 mm to 0.3 mm, and the FEP tube has been further applied to both the thermoelectric (TEC)-modulated on-chip polymerase chain reactions (PCRs) and the continuous flow on-chip PCRs. To the best of our knowledge, this is the first time that an FEP tube with so small ID has been applied to on-chip qPCRs. Based on the comparison with polytetrafluoroethylene (PTFE) regarding the fluorescence signal inside the tube, it can be verified that FEP has much better detection sensitivity than PTFE although these two materials are reckoned to be belonging to the same type of polymer family, generally referred to as Teflon. The Royal Society of Chemistry 2019-01-21 /pmc/articles/PMC9059869/ /pubmed/35520483 http://dx.doi.org/10.1039/c8ra09773a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/
spellingShingle Chemistry
Jiang, Yangyang
Wu, Guizhu
Li, Yuanming
Wu, Wenming
Diameter-definable tubing-microchips for applications in both continuous-flow and TEC-modulated on-chip qPCRs with reaction signal analyzed between different types of Teflon-polymers: PTFE and FEP
title Diameter-definable tubing-microchips for applications in both continuous-flow and TEC-modulated on-chip qPCRs with reaction signal analyzed between different types of Teflon-polymers: PTFE and FEP
title_full Diameter-definable tubing-microchips for applications in both continuous-flow and TEC-modulated on-chip qPCRs with reaction signal analyzed between different types of Teflon-polymers: PTFE and FEP
title_fullStr Diameter-definable tubing-microchips for applications in both continuous-flow and TEC-modulated on-chip qPCRs with reaction signal analyzed between different types of Teflon-polymers: PTFE and FEP
title_full_unstemmed Diameter-definable tubing-microchips for applications in both continuous-flow and TEC-modulated on-chip qPCRs with reaction signal analyzed between different types of Teflon-polymers: PTFE and FEP
title_short Diameter-definable tubing-microchips for applications in both continuous-flow and TEC-modulated on-chip qPCRs with reaction signal analyzed between different types of Teflon-polymers: PTFE and FEP
title_sort diameter-definable tubing-microchips for applications in both continuous-flow and tec-modulated on-chip qpcrs with reaction signal analyzed between different types of teflon-polymers: ptfe and fep
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9059869/
https://www.ncbi.nlm.nih.gov/pubmed/35520483
http://dx.doi.org/10.1039/c8ra09773a
work_keys_str_mv AT jiangyangyang diameterdefinabletubingmicrochipsforapplicationsinbothcontinuousflowandtecmodulatedonchipqpcrswithreactionsignalanalyzedbetweendifferenttypesofteflonpolymersptfeandfep
AT wuguizhu diameterdefinabletubingmicrochipsforapplicationsinbothcontinuousflowandtecmodulatedonchipqpcrswithreactionsignalanalyzedbetweendifferenttypesofteflonpolymersptfeandfep
AT liyuanming diameterdefinabletubingmicrochipsforapplicationsinbothcontinuousflowandtecmodulatedonchipqpcrswithreactionsignalanalyzedbetweendifferenttypesofteflonpolymersptfeandfep
AT wuwenming diameterdefinabletubingmicrochipsforapplicationsinbothcontinuousflowandtecmodulatedonchipqpcrswithreactionsignalanalyzedbetweendifferenttypesofteflonpolymersptfeandfep