Cargando…
Synthesis of AuPd nanoparticle-decorated graphene-coated ZnO nanorod arrays with enhanced photoelectrochemical performance and stability
AuPd nanoparticle-decorated graphene-coated ZnO nanorod (ZNR) array electrodes (ZNR@Gr/AuPd) were synthesized via electrostatic self-assembly followed by solution reduction methods. The morphologies of ZNR@Gr/AuPd were characterized with scanning electron microscopy (SEM), transmission electron micr...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9059997/ https://www.ncbi.nlm.nih.gov/pubmed/35520516 http://dx.doi.org/10.1039/c8ra09028a |
_version_ | 1784698424555208704 |
---|---|
author | Zhang, Yuzhi Zhang, Yunlong Guo, Yunfeng Wu, Lingnan Liu, Yangqiao Song, Lixing |
author_facet | Zhang, Yuzhi Zhang, Yunlong Guo, Yunfeng Wu, Lingnan Liu, Yangqiao Song, Lixing |
author_sort | Zhang, Yuzhi |
collection | PubMed |
description | AuPd nanoparticle-decorated graphene-coated ZnO nanorod (ZNR) array electrodes (ZNR@Gr/AuPd) were synthesized via electrostatic self-assembly followed by solution reduction methods. The morphologies of ZNR@Gr/AuPd were characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM), which indicated that ZNR was well-coated by graphene with 3–5 layers and uniformly decorated with AuPd nanoparticles (about 5 nm). UV-Vis diffuse reflectance and photoluminescence spectra were obtained to analyze the optical properties. The photoelectrochemical (PEC) properties were also evaluated; the results indicated that the photocurrent density was 2.27 mA cm(−2) at 0.8 V versus Ag/AgCl, which was 7.1 times that of bare ZNR. The sample also displayed enhanced PEC stability (91.3%), which prevented photocorrosion. Finally, a proposed PEC mechanism of ZNR@Gr/AuPd was illustrated to explain the charge transfer and the role of graphene and AuPd nanoparticles in the improvement of PEC performance and stability. The ZNR@Gr/AuPd electrode shows excellent PEC performance and stability, exhibiting promising potential in the generation of H(2). |
format | Online Article Text |
id | pubmed-9059997 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90599972022-05-04 Synthesis of AuPd nanoparticle-decorated graphene-coated ZnO nanorod arrays with enhanced photoelectrochemical performance and stability Zhang, Yuzhi Zhang, Yunlong Guo, Yunfeng Wu, Lingnan Liu, Yangqiao Song, Lixing RSC Adv Chemistry AuPd nanoparticle-decorated graphene-coated ZnO nanorod (ZNR) array electrodes (ZNR@Gr/AuPd) were synthesized via electrostatic self-assembly followed by solution reduction methods. The morphologies of ZNR@Gr/AuPd were characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM), which indicated that ZNR was well-coated by graphene with 3–5 layers and uniformly decorated with AuPd nanoparticles (about 5 nm). UV-Vis diffuse reflectance and photoluminescence spectra were obtained to analyze the optical properties. The photoelectrochemical (PEC) properties were also evaluated; the results indicated that the photocurrent density was 2.27 mA cm(−2) at 0.8 V versus Ag/AgCl, which was 7.1 times that of bare ZNR. The sample also displayed enhanced PEC stability (91.3%), which prevented photocorrosion. Finally, a proposed PEC mechanism of ZNR@Gr/AuPd was illustrated to explain the charge transfer and the role of graphene and AuPd nanoparticles in the improvement of PEC performance and stability. The ZNR@Gr/AuPd electrode shows excellent PEC performance and stability, exhibiting promising potential in the generation of H(2). The Royal Society of Chemistry 2019-01-21 /pmc/articles/PMC9059997/ /pubmed/35520516 http://dx.doi.org/10.1039/c8ra09028a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Zhang, Yuzhi Zhang, Yunlong Guo, Yunfeng Wu, Lingnan Liu, Yangqiao Song, Lixing Synthesis of AuPd nanoparticle-decorated graphene-coated ZnO nanorod arrays with enhanced photoelectrochemical performance and stability |
title | Synthesis of AuPd nanoparticle-decorated graphene-coated ZnO nanorod arrays with enhanced photoelectrochemical performance and stability |
title_full | Synthesis of AuPd nanoparticle-decorated graphene-coated ZnO nanorod arrays with enhanced photoelectrochemical performance and stability |
title_fullStr | Synthesis of AuPd nanoparticle-decorated graphene-coated ZnO nanorod arrays with enhanced photoelectrochemical performance and stability |
title_full_unstemmed | Synthesis of AuPd nanoparticle-decorated graphene-coated ZnO nanorod arrays with enhanced photoelectrochemical performance and stability |
title_short | Synthesis of AuPd nanoparticle-decorated graphene-coated ZnO nanorod arrays with enhanced photoelectrochemical performance and stability |
title_sort | synthesis of aupd nanoparticle-decorated graphene-coated zno nanorod arrays with enhanced photoelectrochemical performance and stability |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9059997/ https://www.ncbi.nlm.nih.gov/pubmed/35520516 http://dx.doi.org/10.1039/c8ra09028a |
work_keys_str_mv | AT zhangyuzhi synthesisofaupdnanoparticledecoratedgraphenecoatedznonanorodarrayswithenhancedphotoelectrochemicalperformanceandstability AT zhangyunlong synthesisofaupdnanoparticledecoratedgraphenecoatedznonanorodarrayswithenhancedphotoelectrochemicalperformanceandstability AT guoyunfeng synthesisofaupdnanoparticledecoratedgraphenecoatedznonanorodarrayswithenhancedphotoelectrochemicalperformanceandstability AT wulingnan synthesisofaupdnanoparticledecoratedgraphenecoatedznonanorodarrayswithenhancedphotoelectrochemicalperformanceandstability AT liuyangqiao synthesisofaupdnanoparticledecoratedgraphenecoatedznonanorodarrayswithenhancedphotoelectrochemicalperformanceandstability AT songlixing synthesisofaupdnanoparticledecoratedgraphenecoatedznonanorodarrayswithenhancedphotoelectrochemicalperformanceandstability |