Cargando…
Development and application of novel bio-magnetic membrane capsules for the removal of the cationic dye malachite green in wastewater treatment
Novel bio-magnetic membrane capsules (BMMCs) were prepared by a simple two-step titration-gel cross-linking method using a polyvinyl alcohol (PVA) and sodium alginate (SA) matrix to control the disintegration of phytogenic magnetic nanoparticles (PMNPs) in an aqueous environment, and their performan...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9060252/ https://www.ncbi.nlm.nih.gov/pubmed/35518114 http://dx.doi.org/10.1039/c8ra09275c |
_version_ | 1784698471480033280 |
---|---|
author | Ali, Imran Peng, Changsheng Naz, Iffat Lin, Dichu Saroj, Devendra P. Ali, Mohsin |
author_facet | Ali, Imran Peng, Changsheng Naz, Iffat Lin, Dichu Saroj, Devendra P. Ali, Mohsin |
author_sort | Ali, Imran |
collection | PubMed |
description | Novel bio-magnetic membrane capsules (BMMCs) were prepared by a simple two-step titration-gel cross-linking method using a polyvinyl alcohol (PVA) and sodium alginate (SA) matrix to control the disintegration of phytogenic magnetic nanoparticles (PMNPs) in an aqueous environment, and their performance was investigated for adsorbing cationic malachite green (MG) dye from water. The prepared BMMCs were characterized by FTIR, powder XRD, SEM, EDX, XPS, VSM and TGA techniques. The findings revealed that the hysteresis loops had an excellent superparamagnetic nature with saturation magnetization values of 11.02 emu g(−1). The prepared BMMCs not only controlled the oxidation of PMNPs but also improved the adsorptive performance with respect to MG dye (500 mg g(−1) at 298.15 K and pH 6.5) due to the presence of a large amount of hydrophilic functional groups (hydroxyl/–OH and carboxyl/–COOH) on/in the BMMCs. The smooth encapsulation of PMNPs into the PVA–SA matrix established additional hydrogen bonding among polymer molecular chains, with improved stability, and adsorptive performance was maintained over a wide range of pH values (3–12). Importantly, the prepared BMMCs were easily regenerated just by washing with water, and they could be re-utilized for up to four (4) consecutive treatment cycles without observing any apparent dissolution of iron/Fe(0) or damage to the morphology. According to the mass balance approach, an estimated amount of 100 mL of treated effluent can be obtained from 160 mL of MG dye solution (25 mg L(−1)) just by employing a 0.02 g L(−1) adsorbent dosage. Finally, a model of BMMCs based on zero-effluent discharge was also proposed for commercial or industrial applications. The prepared BMMCs are greatly needed for improving the water/wastewater treatment process and they can be utilized as an excellent adsorbent to remove cationic pollutants for various environmental applications. |
format | Online Article Text |
id | pubmed-9060252 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90602522022-05-04 Development and application of novel bio-magnetic membrane capsules for the removal of the cationic dye malachite green in wastewater treatment Ali, Imran Peng, Changsheng Naz, Iffat Lin, Dichu Saroj, Devendra P. Ali, Mohsin RSC Adv Chemistry Novel bio-magnetic membrane capsules (BMMCs) were prepared by a simple two-step titration-gel cross-linking method using a polyvinyl alcohol (PVA) and sodium alginate (SA) matrix to control the disintegration of phytogenic magnetic nanoparticles (PMNPs) in an aqueous environment, and their performance was investigated for adsorbing cationic malachite green (MG) dye from water. The prepared BMMCs were characterized by FTIR, powder XRD, SEM, EDX, XPS, VSM and TGA techniques. The findings revealed that the hysteresis loops had an excellent superparamagnetic nature with saturation magnetization values of 11.02 emu g(−1). The prepared BMMCs not only controlled the oxidation of PMNPs but also improved the adsorptive performance with respect to MG dye (500 mg g(−1) at 298.15 K and pH 6.5) due to the presence of a large amount of hydrophilic functional groups (hydroxyl/–OH and carboxyl/–COOH) on/in the BMMCs. The smooth encapsulation of PMNPs into the PVA–SA matrix established additional hydrogen bonding among polymer molecular chains, with improved stability, and adsorptive performance was maintained over a wide range of pH values (3–12). Importantly, the prepared BMMCs were easily regenerated just by washing with water, and they could be re-utilized for up to four (4) consecutive treatment cycles without observing any apparent dissolution of iron/Fe(0) or damage to the morphology. According to the mass balance approach, an estimated amount of 100 mL of treated effluent can be obtained from 160 mL of MG dye solution (25 mg L(−1)) just by employing a 0.02 g L(−1) adsorbent dosage. Finally, a model of BMMCs based on zero-effluent discharge was also proposed for commercial or industrial applications. The prepared BMMCs are greatly needed for improving the water/wastewater treatment process and they can be utilized as an excellent adsorbent to remove cationic pollutants for various environmental applications. The Royal Society of Chemistry 2019-01-28 /pmc/articles/PMC9060252/ /pubmed/35518114 http://dx.doi.org/10.1039/c8ra09275c Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Ali, Imran Peng, Changsheng Naz, Iffat Lin, Dichu Saroj, Devendra P. Ali, Mohsin Development and application of novel bio-magnetic membrane capsules for the removal of the cationic dye malachite green in wastewater treatment |
title | Development and application of novel bio-magnetic membrane capsules for the removal of the cationic dye malachite green in wastewater treatment |
title_full | Development and application of novel bio-magnetic membrane capsules for the removal of the cationic dye malachite green in wastewater treatment |
title_fullStr | Development and application of novel bio-magnetic membrane capsules for the removal of the cationic dye malachite green in wastewater treatment |
title_full_unstemmed | Development and application of novel bio-magnetic membrane capsules for the removal of the cationic dye malachite green in wastewater treatment |
title_short | Development and application of novel bio-magnetic membrane capsules for the removal of the cationic dye malachite green in wastewater treatment |
title_sort | development and application of novel bio-magnetic membrane capsules for the removal of the cationic dye malachite green in wastewater treatment |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9060252/ https://www.ncbi.nlm.nih.gov/pubmed/35518114 http://dx.doi.org/10.1039/c8ra09275c |
work_keys_str_mv | AT aliimran developmentandapplicationofnovelbiomagneticmembranecapsulesfortheremovalofthecationicdyemalachitegreeninwastewatertreatment AT pengchangsheng developmentandapplicationofnovelbiomagneticmembranecapsulesfortheremovalofthecationicdyemalachitegreeninwastewatertreatment AT naziffat developmentandapplicationofnovelbiomagneticmembranecapsulesfortheremovalofthecationicdyemalachitegreeninwastewatertreatment AT lindichu developmentandapplicationofnovelbiomagneticmembranecapsulesfortheremovalofthecationicdyemalachitegreeninwastewatertreatment AT sarojdevendrap developmentandapplicationofnovelbiomagneticmembranecapsulesfortheremovalofthecationicdyemalachitegreeninwastewatertreatment AT alimohsin developmentandapplicationofnovelbiomagneticmembranecapsulesfortheremovalofthecationicdyemalachitegreeninwastewatertreatment |