Cargando…

An iterative algorithm for optimizing COVID-19 vaccination strategies considering unknown supply

BACKGROUND AND OBJECTIVE: The distribution of the newly developed vaccines presents a great challenge in the ongoing SARS-CoV-2 pandemic. Policy makers must decide which subgroups should be vaccinated first to minimize the negative consequences of the pandemic. These decisions must be made upfront a...

Descripción completa

Detalles Bibliográficos
Autores principales: Bicher, Martin, Rippinger, Claire, Zechmeister, Melanie, Jahn, Beate, Sroczynski, Gaby, Mühlberger, Nikolai, Santamaria-Navarro, Julia, Urach, Christoph, Brunmeir, Dominik, Siebert, Uwe, Popper, Niki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9060336/
https://www.ncbi.nlm.nih.gov/pubmed/35499997
http://dx.doi.org/10.1371/journal.pone.0265957
Descripción
Sumario:BACKGROUND AND OBJECTIVE: The distribution of the newly developed vaccines presents a great challenge in the ongoing SARS-CoV-2 pandemic. Policy makers must decide which subgroups should be vaccinated first to minimize the negative consequences of the pandemic. These decisions must be made upfront and under uncertainty regarding the amount of vaccine doses available at a given time. The objective of the present work was to develop an iterative optimization algorithm, which provides a prioritization order of predefined subgroups. The results of this algorithm should be optimal but also robust with respect to potentially limited vaccine supply. METHODS: We present an optimization meta-heuristic which can be used in a classic simulation-optimization setting with a simulation model in a feedback loop. The meta-heuristic can be applied in combination with any epidemiological simulation model capable of depicting the effects of vaccine distribution to the modeled population, accepts a vaccine prioritization plan in a certain notation as input, and generates decision making relevant variables such as COVID-19 caused deaths or hospitalizations as output. We finally demonstrate the mechanics of the algorithm presenting the results of a case study performed with an epidemiological agent-based model. RESULTS: We show that the developed method generates a highly robust vaccination prioritization plan which is proven to fulfill an elegant supremacy criterion: the plan is equally optimal for any quantity of vaccine doses available. The algorithm was tested on a case study in the Austrian context and it generated a vaccination plan prioritization favoring individuals age 65+, followed by vulnerable groups, to minimize COVID-19 related burden. DISCUSSION: The results of the case study coincide with the international policy recommendations which strengthen the applicability of the approach. We conclude that the path-dependent optimum optimum provided by the algorithm is well suited for real world applications, in which decision makers need to develop strategies upfront under high levels of uncertainty.