Cargando…
DGCyTOF: Deep learning with graphic cluster visualization to predict cell types of single cell mass cytometry data
Single-cell mass cytometry, also known as cytometry by time of flight (CyTOF) is a powerful high-throughput technology that allows analysis of up to 50 protein markers per cell for the quantification and classification of single cells. Traditional manual gating utilized to identify new cell populati...
Autores principales: | Cheng, Lijun, Karkhanis, Pratik, Gokbag, Birkan, Liu, Yueze, Li, Lang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9060369/ https://www.ncbi.nlm.nih.gov/pubmed/35404970 http://dx.doi.org/10.1371/journal.pcbi.1008885 |
Ejemplares similares
-
Multi-view graph convolutional network for cancer cell-specific synthetic lethality prediction
por: Fan, Kunjie, et al.
Publicado: (2023) -
Synthetic lethal gene pairs: Experimental approaches and predictive models
por: Tang, Shan, et al.
Publicado: (2022) -
XDeathDB: a visualization platform for cell death molecular interactions
por: Gadepalli, Venkat Sundar, et al.
Publicado: (2021) -
ShinySOM: graphical SOM-based analysis of single-cell cytometry data
por: Kratochvíl, Miroslav, et al.
Publicado: (2020) -
Graphical User Interface for the nTOF Transport Code
por: Rejwan, Idan
Publicado: (2018)