Cargando…
Predicting the functional impact of KCNQ1 variants with artificial neural networks
Recent advances in experimental and computational protein structure determination have provided access to high-quality structures for most human proteins and mutants thereof. However, linking changes in structure in protein mutants to functional impact remains an active area of method development. I...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9060377/ https://www.ncbi.nlm.nih.gov/pubmed/35442947 http://dx.doi.org/10.1371/journal.pcbi.1010038 |
_version_ | 1784698492707405824 |
---|---|
author | Phul, Saksham Kuenze, Georg Vanoye, Carlos G. Sanders, Charles R. George, Alfred L. Meiler, Jens |
author_facet | Phul, Saksham Kuenze, Georg Vanoye, Carlos G. Sanders, Charles R. George, Alfred L. Meiler, Jens |
author_sort | Phul, Saksham |
collection | PubMed |
description | Recent advances in experimental and computational protein structure determination have provided access to high-quality structures for most human proteins and mutants thereof. However, linking changes in structure in protein mutants to functional impact remains an active area of method development. If successful, such methods can ultimately assist physicians in taking appropriate treatment decisions. This work presents three artificial neural network (ANN)-based predictive models that classify four key functional parameters of KCNQ1 variants as normal or dysfunctional using PSSM-based evolutionary and/or biophysical descriptors. Recent advances in predicting protein structure and variant properties with artificial intelligence (AI) rely heavily on the availability of evolutionary features and thus fail to directly assess the biophysical underpinnings of a change in structure and/or function. The central goal of this work was to develop an ANN model based on structure and physiochemical properties of KCNQ1 potassium channels that performs comparably or better than algorithms using only on PSSM-based evolutionary features. These biophysical features highlight the structure-function relationships that govern protein stability, function, and regulation. The input sensitivity algorithm incorporates the roles of hydrophobicity, polarizability, and functional densities on key functional parameters of the KCNQ1 channel. Inclusion of the biophysical features outperforms exclusive use of PSSM-based evolutionary features in predicting activation voltage dependence and deactivation time. As AI is increasingly applied to problems in biology, biophysical understanding will be critical with respect to ‘explainable AI’, i.e., understanding the relation of sequence, structure, and function of proteins. Our model is available at www.kcnq1predict.org. |
format | Online Article Text |
id | pubmed-9060377 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-90603772022-05-03 Predicting the functional impact of KCNQ1 variants with artificial neural networks Phul, Saksham Kuenze, Georg Vanoye, Carlos G. Sanders, Charles R. George, Alfred L. Meiler, Jens PLoS Comput Biol Research Article Recent advances in experimental and computational protein structure determination have provided access to high-quality structures for most human proteins and mutants thereof. However, linking changes in structure in protein mutants to functional impact remains an active area of method development. If successful, such methods can ultimately assist physicians in taking appropriate treatment decisions. This work presents three artificial neural network (ANN)-based predictive models that classify four key functional parameters of KCNQ1 variants as normal or dysfunctional using PSSM-based evolutionary and/or biophysical descriptors. Recent advances in predicting protein structure and variant properties with artificial intelligence (AI) rely heavily on the availability of evolutionary features and thus fail to directly assess the biophysical underpinnings of a change in structure and/or function. The central goal of this work was to develop an ANN model based on structure and physiochemical properties of KCNQ1 potassium channels that performs comparably or better than algorithms using only on PSSM-based evolutionary features. These biophysical features highlight the structure-function relationships that govern protein stability, function, and regulation. The input sensitivity algorithm incorporates the roles of hydrophobicity, polarizability, and functional densities on key functional parameters of the KCNQ1 channel. Inclusion of the biophysical features outperforms exclusive use of PSSM-based evolutionary features in predicting activation voltage dependence and deactivation time. As AI is increasingly applied to problems in biology, biophysical understanding will be critical with respect to ‘explainable AI’, i.e., understanding the relation of sequence, structure, and function of proteins. Our model is available at www.kcnq1predict.org. Public Library of Science 2022-04-20 /pmc/articles/PMC9060377/ /pubmed/35442947 http://dx.doi.org/10.1371/journal.pcbi.1010038 Text en © 2022 Phul et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Phul, Saksham Kuenze, Georg Vanoye, Carlos G. Sanders, Charles R. George, Alfred L. Meiler, Jens Predicting the functional impact of KCNQ1 variants with artificial neural networks |
title | Predicting the functional impact of KCNQ1 variants with artificial neural networks |
title_full | Predicting the functional impact of KCNQ1 variants with artificial neural networks |
title_fullStr | Predicting the functional impact of KCNQ1 variants with artificial neural networks |
title_full_unstemmed | Predicting the functional impact of KCNQ1 variants with artificial neural networks |
title_short | Predicting the functional impact of KCNQ1 variants with artificial neural networks |
title_sort | predicting the functional impact of kcnq1 variants with artificial neural networks |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9060377/ https://www.ncbi.nlm.nih.gov/pubmed/35442947 http://dx.doi.org/10.1371/journal.pcbi.1010038 |
work_keys_str_mv | AT phulsaksham predictingthefunctionalimpactofkcnq1variantswithartificialneuralnetworks AT kuenzegeorg predictingthefunctionalimpactofkcnq1variantswithartificialneuralnetworks AT vanoyecarlosg predictingthefunctionalimpactofkcnq1variantswithartificialneuralnetworks AT sanderscharlesr predictingthefunctionalimpactofkcnq1variantswithartificialneuralnetworks AT georgealfredl predictingthefunctionalimpactofkcnq1variantswithartificialneuralnetworks AT meilerjens predictingthefunctionalimpactofkcnq1variantswithartificialneuralnetworks |