Cargando…
SinGAN-Seg: Synthetic training data generation for medical image segmentation
Analyzing medical data to find abnormalities is a time-consuming and costly task, particularly for rare abnormalities, requiring tremendous efforts from medical experts. Therefore, artificial intelligence has become a popular tool for the automatic processing of medical data, acting as a supportive...
Autores principales: | Thambawita, Vajira, Salehi, Pegah, Sheshkal, Sajad Amouei, Hicks, Steven A., Hammer, Hugo L., Parasa, Sravanthi, de Lange, Thomas, Halvorsen, Pål, Riegler, Michael A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9060378/ https://www.ncbi.nlm.nih.gov/pubmed/35500005 http://dx.doi.org/10.1371/journal.pone.0267976 |
Ejemplares similares
-
Impact of Image Resolution on Deep Learning Performance in Endoscopy Image Classification: An Experimental Study Using a Large Dataset of Endoscopic Images
por: Thambawita, Vajira, et al.
Publicado: (2021) -
On evaluation metrics for medical applications of artificial intelligence
por: Hicks, Steven A., et al.
Publicado: (2022) -
GridHTM: Grid-Based Hierarchical Temporal Memory for Anomaly Detection in Videos
por: Monakhov, Vladimir, et al.
Publicado: (2023) -
Machine Learning-Based Analysis of Sperm Videos and Participant Data for Male Fertility Prediction
por: Hicks, Steven A., et al.
Publicado: (2019) -
CELLULAR, A Cell Autophagy Imaging Dataset
por: Al Outa, Amani, et al.
Publicado: (2023)