Cargando…

Segmenting Skin Biopsy Images with Coarse and Sparse Annotations using U-Net

The number of melanoma diagnoses has increased dramatically over the past three decades, outpacing almost all other cancers. Nearly 1 in 4 skin biopsies is of melanocytic lesions, highlighting the clinical and public health importance of correct diagnosis. Deep learning image analysis methods may im...

Descripción completa

Detalles Bibliográficos
Autores principales: Nofallah, Shima, Mokhtari, Mojgan, Wu, Wenjun, Mehta, Sachin, Knezevich, Stevan, May, Caitlin J., Chang, Oliver H., Lee, Annie C., Elmore, Joann G., Shapiro, Linda G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9060411/
https://www.ncbi.nlm.nih.gov/pubmed/35501416
http://dx.doi.org/10.1007/s10278-022-00641-8
_version_ 1784698497327431680
author Nofallah, Shima
Mokhtari, Mojgan
Wu, Wenjun
Mehta, Sachin
Knezevich, Stevan
May, Caitlin J.
Chang, Oliver H.
Lee, Annie C.
Elmore, Joann G.
Shapiro, Linda G.
author_facet Nofallah, Shima
Mokhtari, Mojgan
Wu, Wenjun
Mehta, Sachin
Knezevich, Stevan
May, Caitlin J.
Chang, Oliver H.
Lee, Annie C.
Elmore, Joann G.
Shapiro, Linda G.
author_sort Nofallah, Shima
collection PubMed
description The number of melanoma diagnoses has increased dramatically over the past three decades, outpacing almost all other cancers. Nearly 1 in 4 skin biopsies is of melanocytic lesions, highlighting the clinical and public health importance of correct diagnosis. Deep learning image analysis methods may improve and complement current diagnostic and prognostic capabilities. The histologic evaluation of melanocytic lesions, including melanoma and its precursors, involves determining whether the melanocytic population involves the epidermis, dermis, or both. Semantic segmentation of clinically important structures in skin biopsies is a crucial step towards an accurate diagnosis. While training a segmentation model requires ground-truth labels, annotation of large images is a labor-intensive task. This issue becomes especially pronounced in a medical image dataset in which expert annotation is the gold standard. In this paper, we propose a two-stage segmentation pipeline using coarse and sparse annotations on a small region of the whole slide image as the training set. Segmentation results on whole slide images show promising performance for the proposed pipeline.
format Online
Article
Text
id pubmed-9060411
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Springer International Publishing
record_format MEDLINE/PubMed
spelling pubmed-90604112022-05-03 Segmenting Skin Biopsy Images with Coarse and Sparse Annotations using U-Net Nofallah, Shima Mokhtari, Mojgan Wu, Wenjun Mehta, Sachin Knezevich, Stevan May, Caitlin J. Chang, Oliver H. Lee, Annie C. Elmore, Joann G. Shapiro, Linda G. J Digit Imaging Original Paper The number of melanoma diagnoses has increased dramatically over the past three decades, outpacing almost all other cancers. Nearly 1 in 4 skin biopsies is of melanocytic lesions, highlighting the clinical and public health importance of correct diagnosis. Deep learning image analysis methods may improve and complement current diagnostic and prognostic capabilities. The histologic evaluation of melanocytic lesions, including melanoma and its precursors, involves determining whether the melanocytic population involves the epidermis, dermis, or both. Semantic segmentation of clinically important structures in skin biopsies is a crucial step towards an accurate diagnosis. While training a segmentation model requires ground-truth labels, annotation of large images is a labor-intensive task. This issue becomes especially pronounced in a medical image dataset in which expert annotation is the gold standard. In this paper, we propose a two-stage segmentation pipeline using coarse and sparse annotations on a small region of the whole slide image as the training set. Segmentation results on whole slide images show promising performance for the proposed pipeline. Springer International Publishing 2022-05-02 2022-10 /pmc/articles/PMC9060411/ /pubmed/35501416 http://dx.doi.org/10.1007/s10278-022-00641-8 Text en © The Author(s) under exclusive licence to Society for Imaging Informatics in Medicine 2022
spellingShingle Original Paper
Nofallah, Shima
Mokhtari, Mojgan
Wu, Wenjun
Mehta, Sachin
Knezevich, Stevan
May, Caitlin J.
Chang, Oliver H.
Lee, Annie C.
Elmore, Joann G.
Shapiro, Linda G.
Segmenting Skin Biopsy Images with Coarse and Sparse Annotations using U-Net
title Segmenting Skin Biopsy Images with Coarse and Sparse Annotations using U-Net
title_full Segmenting Skin Biopsy Images with Coarse and Sparse Annotations using U-Net
title_fullStr Segmenting Skin Biopsy Images with Coarse and Sparse Annotations using U-Net
title_full_unstemmed Segmenting Skin Biopsy Images with Coarse and Sparse Annotations using U-Net
title_short Segmenting Skin Biopsy Images with Coarse and Sparse Annotations using U-Net
title_sort segmenting skin biopsy images with coarse and sparse annotations using u-net
topic Original Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9060411/
https://www.ncbi.nlm.nih.gov/pubmed/35501416
http://dx.doi.org/10.1007/s10278-022-00641-8
work_keys_str_mv AT nofallahshima segmentingskinbiopsyimageswithcoarseandsparseannotationsusingunet
AT mokhtarimojgan segmentingskinbiopsyimageswithcoarseandsparseannotationsusingunet
AT wuwenjun segmentingskinbiopsyimageswithcoarseandsparseannotationsusingunet
AT mehtasachin segmentingskinbiopsyimageswithcoarseandsparseannotationsusingunet
AT knezevichstevan segmentingskinbiopsyimageswithcoarseandsparseannotationsusingunet
AT maycaitlinj segmentingskinbiopsyimageswithcoarseandsparseannotationsusingunet
AT changoliverh segmentingskinbiopsyimageswithcoarseandsparseannotationsusingunet
AT leeanniec segmentingskinbiopsyimageswithcoarseandsparseannotationsusingunet
AT elmorejoanng segmentingskinbiopsyimageswithcoarseandsparseannotationsusingunet
AT shapirolindag segmentingskinbiopsyimageswithcoarseandsparseannotationsusingunet