Cargando…
Time to reality check the promises of machine learning-powered precision medicine
Machine learning methods, combined with large electronic health databases, could enable a personalised approach to medicine through improved diagnosis and prediction of individual responses to therapies. If successful, this strategy would represent a revolution in clinical research and practice. How...
Autores principales: | Wilkinson, Jack, Arnold, Kellyn F, Murray, Eleanor J, van Smeden, Maarten, Carr, Kareem, Sippy, Rachel, de Kamps, Marc, Beam, Andrew, Konigorski, Stefan, Lippert, Christoph, Gilthorpe, Mark S, Tennant, Peter W G |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9060421/ https://www.ncbi.nlm.nih.gov/pubmed/33328030 http://dx.doi.org/10.1016/S2589-7500(20)30200-4 |
Ejemplares similares
-
Reflection on modern methods: generalized linear models for prognosis and intervention—theory, practice and implications for machine learning
por: Arnold, Kellyn F, et al.
Publicado: (2020) -
A causal inference perspective on the analysis of compositional data
por: Arnold, Kellyn F, et al.
Publicado: (2020) -
Adjustment for energy intake in nutritional research: a causal inference perspective
por: Tomova, Georgia D, et al.
Publicado: (2021) -
Analyses of ‘change scores’ do not estimate causal effects in observational data
por: Tennant, Peter W G, et al.
Publicado: (2021) -
The LiverTox Paradox-Gaps between Promised Data and Reality Check
por: Teschke, Rolf, et al.
Publicado: (2021)