Cargando…
Adjustable object floating states based on three-segment three-phase contact line evolution
Objects floating on water are ubiquitous in nature and daily life. The floating states of objects are significant for a wide range of fields, including assembly, mineral flotation, nanostructured construction, and floating robot design. Generally, an object exhibits a unique and fixed floating state...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9060461/ https://www.ncbi.nlm.nih.gov/pubmed/35316136 http://dx.doi.org/10.1073/pnas.2201665119 |
Sumario: | Objects floating on water are ubiquitous in nature and daily life. The floating states of objects are significant for a wide range of fields, including assembly, mineral flotation, nanostructured construction, and floating robot design. Generally, an object exhibits a unique and fixed floating state. The real-time regulation of floating states by a simple method is attractive but challenging. Based on in-depth analysis of the different floating states of fruits falling on water, we reveal that the mutable floating states are caused by the three-segment three-phase contact line dynamics. Accordingly, we propose a “buoyancy hysteresis loop” for the transformation of objects between different floating states. More importantly, we demonstrate the potential applications of floating state transformation in solar-powered water evaporation and interface catalysis. The evaporation and catalytic efficiencies can be changed several times by switching the floating state. These findings deepen the understanding of the interfacial effect to the floating of micro-objects and show great potential for floating-related fields. |
---|