Cargando…

Structural determinants of dual incretin receptor agonism by tirzepatide

Tirzepatide (LY3298176) is a fatty-acid-modified, dual incretin receptor agonist that exhibits pharmacology similar to native GIP at the glucose-dependent insulinotropic polypeptide receptor (GIPR) but shows bias toward cyclic adenosine monophosphate signaling at the glucagon-like peptide-1 receptor...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Bingfa, Willard, Francis S., Feng, Dan, Alsina-Fernandez, Jorge, Chen, Qi, Vieth, Michal, Ho, Joseph D., Showalter, Aaron D., Stutsman, Cynthia, Ding, Liyun, Suter, Todd M., Dunbar, James D., Carpenter, John W., Mohammed, Faiz Ahmad, Aihara, Eitaro, Brown, Robert A., Bueno, Ana B., Emmerson, Paul J., Moyers, Julie S., Kobilka, Tong Sun, Coghlan, Matthew P., Kobilka, Brian K., Sloop, Kyle W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9060465/
https://www.ncbi.nlm.nih.gov/pubmed/35333651
http://dx.doi.org/10.1073/pnas.2116506119
_version_ 1784698508846039040
author Sun, Bingfa
Willard, Francis S.
Feng, Dan
Alsina-Fernandez, Jorge
Chen, Qi
Vieth, Michal
Ho, Joseph D.
Showalter, Aaron D.
Stutsman, Cynthia
Ding, Liyun
Suter, Todd M.
Dunbar, James D.
Carpenter, John W.
Mohammed, Faiz Ahmad
Aihara, Eitaro
Brown, Robert A.
Bueno, Ana B.
Emmerson, Paul J.
Moyers, Julie S.
Kobilka, Tong Sun
Coghlan, Matthew P.
Kobilka, Brian K.
Sloop, Kyle W.
author_facet Sun, Bingfa
Willard, Francis S.
Feng, Dan
Alsina-Fernandez, Jorge
Chen, Qi
Vieth, Michal
Ho, Joseph D.
Showalter, Aaron D.
Stutsman, Cynthia
Ding, Liyun
Suter, Todd M.
Dunbar, James D.
Carpenter, John W.
Mohammed, Faiz Ahmad
Aihara, Eitaro
Brown, Robert A.
Bueno, Ana B.
Emmerson, Paul J.
Moyers, Julie S.
Kobilka, Tong Sun
Coghlan, Matthew P.
Kobilka, Brian K.
Sloop, Kyle W.
author_sort Sun, Bingfa
collection PubMed
description Tirzepatide (LY3298176) is a fatty-acid-modified, dual incretin receptor agonist that exhibits pharmacology similar to native GIP at the glucose-dependent insulinotropic polypeptide receptor (GIPR) but shows bias toward cyclic adenosine monophosphate signaling at the glucagon-like peptide-1 receptor (GLP-1R). In addition to GIPR signaling, the pathway bias at the GLP-1R may contribute to the efficacy of tirzepatide at improving glucose control and body weight regulation in type 2 diabetes mellitus. To investigate the structural basis for the differential signaling of tirzepatide, mechanistic pharmacology studies were allied with cryogenic electron microscopy. Here, we report high-resolution structures of tirzepatide in complex with the GIPR and GLP-1R. Similar to the native ligands, tirzepatide adopts an α-helical conformation with the N terminus reaching deep within the transmembrane core of both receptors. Analyses of the N-terminal tyrosine (Tyr1(Tzp)) of tirzepatide revealed a weak interaction with the GLP-1R. Molecular dynamics simulations indicated a greater propensity of intermittent hydrogen bonding between the lipid moiety of tirzepatide and the GIPR versus the GLP-1R, consistent with a more compact tirzepatide–GIPR complex. Informed by these analyses, tirzepatide was deconstructed, revealing a peptide structure–activity relationship that is influenced by acylation-dependent signal transduction. For the GIPR, Tyr1(Tzp) and other residues making strong interactions within the receptor core allow tirzepatide to tolerate fatty acid modification, yielding an affinity equaling that of GIP. Conversely, high-affinity binding with the extracellular domain of the GLP-1R, coupled with decreased stability from the Tyr1(Tzp) and the lipid moiety, foster biased signaling and reduced receptor desensitization. Together, these studies inform the structural determinants underlying the function of tirzepatide.
format Online
Article
Text
id pubmed-9060465
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-90604652022-05-03 Structural determinants of dual incretin receptor agonism by tirzepatide Sun, Bingfa Willard, Francis S. Feng, Dan Alsina-Fernandez, Jorge Chen, Qi Vieth, Michal Ho, Joseph D. Showalter, Aaron D. Stutsman, Cynthia Ding, Liyun Suter, Todd M. Dunbar, James D. Carpenter, John W. Mohammed, Faiz Ahmad Aihara, Eitaro Brown, Robert A. Bueno, Ana B. Emmerson, Paul J. Moyers, Julie S. Kobilka, Tong Sun Coghlan, Matthew P. Kobilka, Brian K. Sloop, Kyle W. Proc Natl Acad Sci U S A Biological Sciences Tirzepatide (LY3298176) is a fatty-acid-modified, dual incretin receptor agonist that exhibits pharmacology similar to native GIP at the glucose-dependent insulinotropic polypeptide receptor (GIPR) but shows bias toward cyclic adenosine monophosphate signaling at the glucagon-like peptide-1 receptor (GLP-1R). In addition to GIPR signaling, the pathway bias at the GLP-1R may contribute to the efficacy of tirzepatide at improving glucose control and body weight regulation in type 2 diabetes mellitus. To investigate the structural basis for the differential signaling of tirzepatide, mechanistic pharmacology studies were allied with cryogenic electron microscopy. Here, we report high-resolution structures of tirzepatide in complex with the GIPR and GLP-1R. Similar to the native ligands, tirzepatide adopts an α-helical conformation with the N terminus reaching deep within the transmembrane core of both receptors. Analyses of the N-terminal tyrosine (Tyr1(Tzp)) of tirzepatide revealed a weak interaction with the GLP-1R. Molecular dynamics simulations indicated a greater propensity of intermittent hydrogen bonding between the lipid moiety of tirzepatide and the GIPR versus the GLP-1R, consistent with a more compact tirzepatide–GIPR complex. Informed by these analyses, tirzepatide was deconstructed, revealing a peptide structure–activity relationship that is influenced by acylation-dependent signal transduction. For the GIPR, Tyr1(Tzp) and other residues making strong interactions within the receptor core allow tirzepatide to tolerate fatty acid modification, yielding an affinity equaling that of GIP. Conversely, high-affinity binding with the extracellular domain of the GLP-1R, coupled with decreased stability from the Tyr1(Tzp) and the lipid moiety, foster biased signaling and reduced receptor desensitization. Together, these studies inform the structural determinants underlying the function of tirzepatide. National Academy of Sciences 2022-03-25 2022-03-29 /pmc/articles/PMC9060465/ /pubmed/35333651 http://dx.doi.org/10.1073/pnas.2116506119 Text en Copyright © 2022 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by/4.0/This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY) (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Biological Sciences
Sun, Bingfa
Willard, Francis S.
Feng, Dan
Alsina-Fernandez, Jorge
Chen, Qi
Vieth, Michal
Ho, Joseph D.
Showalter, Aaron D.
Stutsman, Cynthia
Ding, Liyun
Suter, Todd M.
Dunbar, James D.
Carpenter, John W.
Mohammed, Faiz Ahmad
Aihara, Eitaro
Brown, Robert A.
Bueno, Ana B.
Emmerson, Paul J.
Moyers, Julie S.
Kobilka, Tong Sun
Coghlan, Matthew P.
Kobilka, Brian K.
Sloop, Kyle W.
Structural determinants of dual incretin receptor agonism by tirzepatide
title Structural determinants of dual incretin receptor agonism by tirzepatide
title_full Structural determinants of dual incretin receptor agonism by tirzepatide
title_fullStr Structural determinants of dual incretin receptor agonism by tirzepatide
title_full_unstemmed Structural determinants of dual incretin receptor agonism by tirzepatide
title_short Structural determinants of dual incretin receptor agonism by tirzepatide
title_sort structural determinants of dual incretin receptor agonism by tirzepatide
topic Biological Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9060465/
https://www.ncbi.nlm.nih.gov/pubmed/35333651
http://dx.doi.org/10.1073/pnas.2116506119
work_keys_str_mv AT sunbingfa structuraldeterminantsofdualincretinreceptoragonismbytirzepatide
AT willardfranciss structuraldeterminantsofdualincretinreceptoragonismbytirzepatide
AT fengdan structuraldeterminantsofdualincretinreceptoragonismbytirzepatide
AT alsinafernandezjorge structuraldeterminantsofdualincretinreceptoragonismbytirzepatide
AT chenqi structuraldeterminantsofdualincretinreceptoragonismbytirzepatide
AT viethmichal structuraldeterminantsofdualincretinreceptoragonismbytirzepatide
AT hojosephd structuraldeterminantsofdualincretinreceptoragonismbytirzepatide
AT showalteraarond structuraldeterminantsofdualincretinreceptoragonismbytirzepatide
AT stutsmancynthia structuraldeterminantsofdualincretinreceptoragonismbytirzepatide
AT dingliyun structuraldeterminantsofdualincretinreceptoragonismbytirzepatide
AT sutertoddm structuraldeterminantsofdualincretinreceptoragonismbytirzepatide
AT dunbarjamesd structuraldeterminantsofdualincretinreceptoragonismbytirzepatide
AT carpenterjohnw structuraldeterminantsofdualincretinreceptoragonismbytirzepatide
AT mohammedfaizahmad structuraldeterminantsofdualincretinreceptoragonismbytirzepatide
AT aiharaeitaro structuraldeterminantsofdualincretinreceptoragonismbytirzepatide
AT brownroberta structuraldeterminantsofdualincretinreceptoragonismbytirzepatide
AT buenoanab structuraldeterminantsofdualincretinreceptoragonismbytirzepatide
AT emmersonpaulj structuraldeterminantsofdualincretinreceptoragonismbytirzepatide
AT moyersjulies structuraldeterminantsofdualincretinreceptoragonismbytirzepatide
AT kobilkatongsun structuraldeterminantsofdualincretinreceptoragonismbytirzepatide
AT coghlanmatthewp structuraldeterminantsofdualincretinreceptoragonismbytirzepatide
AT kobilkabriank structuraldeterminantsofdualincretinreceptoragonismbytirzepatide
AT sloopkylew structuraldeterminantsofdualincretinreceptoragonismbytirzepatide