Cargando…
Structure and mechanism for iterative amide N-methylation in the biosynthesis of channel-forming peptide cytotoxins
The polytheonamides are highly modified and potent, cytotoxic peptides with a unique β-helical structure (helical diameter ∼4 Å) that affords selective membrane permeation of monovalent cations. Toxicity has been linked to promiscuous ion-channel behavior in studies of the prototypical polytheonamid...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9060474/ https://www.ncbi.nlm.nih.gov/pubmed/35316135 http://dx.doi.org/10.1073/pnas.2116578119 |
Sumario: | The polytheonamides are highly modified and potent, cytotoxic peptides with a unique β-helical structure (helical diameter ∼4 Å) that affords selective membrane permeation of monovalent cations. Toxicity has been linked to promiscuous ion-channel behavior in studies of the prototypical polytheonamide B. Specific structural features of the β-helical toxins include, among other modifications, Cα-epimerizations and Nγ-methylations, which have been highlighted as the early-stage modifications most critical for β-helix formation. Here, we interrogate Cα-epimerization and Nγ-methylation to understand the importance of these modifications for secondary structure. We characterize the mechanism of Nγ-methylations on the amide side chains of D-Asn, an enzymatic modification with little biochemical precedent. Crystal structures of the AerE methyltransferase in complex with its epimerized peptide substrate and S-adenosyl-homocysteine reveal features of substrate recognition and an unexpected metal-ion that may mediate methyl transfer to the poorly nucleophilic amide. These studies provide a framework for the engineering of novel β-helical peptides with ion and membrane selectivity. |
---|