Cargando…
Non-Fermi liquid phase and linear-in-temperature scattering rate in overdoped two-dimensional Hubbard model
Understanding electronic properties that violate the Landau Fermi liquid paradigm in cuprate superconductors remains a major challenge in condensed-matter physics. The strange metal state in overdoped cuprates that exhibits linear-in-temperature scattering rate and direct current (dc) resistivity is...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9060486/ https://www.ncbi.nlm.nih.gov/pubmed/35320041 http://dx.doi.org/10.1073/pnas.2115819119 |
Sumario: | Understanding electronic properties that violate the Landau Fermi liquid paradigm in cuprate superconductors remains a major challenge in condensed-matter physics. The strange metal state in overdoped cuprates that exhibits linear-in-temperature scattering rate and direct current (dc) resistivity is a particularly puzzling example. Here, we compute the electronic scattering rate in the two-dimensional Hubbard model using cluster generalization of dynamical mean-field theory. We present a global phase diagram documenting an apparent non-Fermi liquid phase, in between the pseudogap and Fermi liquid phase in the doped Mott insulator regime. We discover that in this non-Fermi liquid phase, the electronic scattering rate [Formula: see text] can display linear temperature dependence as temperature T goes to zero. In the temperature range that we can access, the T-dependent scattering rate is isotropic on the Fermi surface, in agreement with recent experiments. Using fluctuation diagnostic techniques, we identify antiferromagnetic fluctuations as the physical origin of the T-linear electronic scattering rate. |
---|