Cargando…
The photobiology of the human circadian clock
In modern society, the widespread use of artificial light at night disrupts the suprachiasmatic nucleus (SCN), which serves as our central circadian clock. Existing models describe excitatory responses of the SCN to primarily blue light, but direct measures in humans are absent. The combination of s...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9060497/ https://www.ncbi.nlm.nih.gov/pubmed/35312355 http://dx.doi.org/10.1073/pnas.2118803119 |
_version_ | 1784698516595015680 |
---|---|
author | Schoonderwoerd, Robin A. de Rover, Mischa Janse, Jan A. M. Hirschler, Lydiane Willemse, Channa R. Scholten, Leonie Klop, Ilse van Berloo, Sander van Osch, Matthias J. P. Swaab, Dick F. Meijer, Johanna H. |
author_facet | Schoonderwoerd, Robin A. de Rover, Mischa Janse, Jan A. M. Hirschler, Lydiane Willemse, Channa R. Scholten, Leonie Klop, Ilse van Berloo, Sander van Osch, Matthias J. P. Swaab, Dick F. Meijer, Johanna H. |
author_sort | Schoonderwoerd, Robin A. |
collection | PubMed |
description | In modern society, the widespread use of artificial light at night disrupts the suprachiasmatic nucleus (SCN), which serves as our central circadian clock. Existing models describe excitatory responses of the SCN to primarily blue light, but direct measures in humans are absent. The combination of state-of-the-art neuroimaging techniques and custom-made MRI compatible light-emitting diode devices allowed to directly measure the light response of the SCN. In contrast to the general expectation, we found that blood oxygen level–dependent (BOLD) functional MRI signals in the SCN were suppressed by light. The suppressions were observed not only in response to narrowband blue light (λ(max): 470 nm) but remarkably, also in response to green (λ(max): 515 nm) and orange (λ(max): 590 nm), but not to violet light (λ(max): 405 nm). The broadband sensitivity of the SCN implies that strategies on light exposure should be revised: enhancement of light levels during daytime is possible with wavelengths other than blue, while during nighttime, all colors are potentially disruptive. |
format | Online Article Text |
id | pubmed-9060497 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-90604972022-05-03 The photobiology of the human circadian clock Schoonderwoerd, Robin A. de Rover, Mischa Janse, Jan A. M. Hirschler, Lydiane Willemse, Channa R. Scholten, Leonie Klop, Ilse van Berloo, Sander van Osch, Matthias J. P. Swaab, Dick F. Meijer, Johanna H. Proc Natl Acad Sci U S A Biological Sciences In modern society, the widespread use of artificial light at night disrupts the suprachiasmatic nucleus (SCN), which serves as our central circadian clock. Existing models describe excitatory responses of the SCN to primarily blue light, but direct measures in humans are absent. The combination of state-of-the-art neuroimaging techniques and custom-made MRI compatible light-emitting diode devices allowed to directly measure the light response of the SCN. In contrast to the general expectation, we found that blood oxygen level–dependent (BOLD) functional MRI signals in the SCN were suppressed by light. The suppressions were observed not only in response to narrowband blue light (λ(max): 470 nm) but remarkably, also in response to green (λ(max): 515 nm) and orange (λ(max): 590 nm), but not to violet light (λ(max): 405 nm). The broadband sensitivity of the SCN implies that strategies on light exposure should be revised: enhancement of light levels during daytime is possible with wavelengths other than blue, while during nighttime, all colors are potentially disruptive. National Academy of Sciences 2022-03-21 2022-03-29 /pmc/articles/PMC9060497/ /pubmed/35312355 http://dx.doi.org/10.1073/pnas.2118803119 Text en Copyright © 2022 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Biological Sciences Schoonderwoerd, Robin A. de Rover, Mischa Janse, Jan A. M. Hirschler, Lydiane Willemse, Channa R. Scholten, Leonie Klop, Ilse van Berloo, Sander van Osch, Matthias J. P. Swaab, Dick F. Meijer, Johanna H. The photobiology of the human circadian clock |
title | The photobiology of the human circadian clock |
title_full | The photobiology of the human circadian clock |
title_fullStr | The photobiology of the human circadian clock |
title_full_unstemmed | The photobiology of the human circadian clock |
title_short | The photobiology of the human circadian clock |
title_sort | photobiology of the human circadian clock |
topic | Biological Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9060497/ https://www.ncbi.nlm.nih.gov/pubmed/35312355 http://dx.doi.org/10.1073/pnas.2118803119 |
work_keys_str_mv | AT schoonderwoerdrobina thephotobiologyofthehumancircadianclock AT derovermischa thephotobiologyofthehumancircadianclock AT jansejanam thephotobiologyofthehumancircadianclock AT hirschlerlydiane thephotobiologyofthehumancircadianclock AT willemsechannar thephotobiologyofthehumancircadianclock AT scholtenleonie thephotobiologyofthehumancircadianclock AT klopilse thephotobiologyofthehumancircadianclock AT vanberloosander thephotobiologyofthehumancircadianclock AT vanoschmatthiasjp thephotobiologyofthehumancircadianclock AT swaabdickf thephotobiologyofthehumancircadianclock AT meijerjohannah thephotobiologyofthehumancircadianclock AT schoonderwoerdrobina photobiologyofthehumancircadianclock AT derovermischa photobiologyofthehumancircadianclock AT jansejanam photobiologyofthehumancircadianclock AT hirschlerlydiane photobiologyofthehumancircadianclock AT willemsechannar photobiologyofthehumancircadianclock AT scholtenleonie photobiologyofthehumancircadianclock AT klopilse photobiologyofthehumancircadianclock AT vanberloosander photobiologyofthehumancircadianclock AT vanoschmatthiasjp photobiologyofthehumancircadianclock AT swaabdickf photobiologyofthehumancircadianclock AT meijerjohannah photobiologyofthehumancircadianclock |