Cargando…
Chemical space exploration guided by deep neural networks
A parametric t-SNE approach based on deep feed-forward neural networks was applied to the chemical space visualization problem. It is able to retain more information than certain dimensionality reduction techniques used for this purpose (principal component analysis (PCA), multidimensional scaling (...
Autores principales: | Karlov, Dmitry S., Sosnin, Sergey, Tetko, Igor V., Fedorov, Maxim V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9060647/ https://www.ncbi.nlm.nih.gov/pubmed/35514634 http://dx.doi.org/10.1039/c8ra10182e |
Ejemplares similares
-
Exploring Chemical Reaction Space with Reaction Difference
Fingerprints and Parametric t-SNE
por: Andronov, Mikhail, et al.
Publicado: (2021) -
Transformer-based artificial neural networks for the conversion between chemical notations
por: Krasnov, Lev, et al.
Publicado: (2021) -
graphDelta: MPNN Scoring Function for the Affinity
Prediction of Protein–Ligand Complexes
por: Karlov, Dmitry S., et al.
Publicado: (2020) -
A Survey of Multi‐task Learning Methods in Chemoinformatics
por: Sosnin, Sergey, et al.
Publicado: (2018) -
ChemSpaX: exploration of chemical space by automated functionalization of molecular scaffold
por: Kalikadien, Adarsh V., et al.
Publicado: (2022)