Cargando…

Electrical control of liquid metal amoeba with directional extension formation

In this study, an electric field was used to regulate and control pseudopodia-like extensions of a liquid metal-Al (LM-Al) droplet in certain directions. The results suggest that in certain electric fields, the LM-Al droplets tend to generate extensions perpendicular to the electric field; the under...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Liang, Zhao, Xi, Guo, Jiarui, Liu, Jing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9060886/
https://www.ncbi.nlm.nih.gov/pubmed/35520505
http://dx.doi.org/10.1039/c8ra10044f
Descripción
Sumario:In this study, an electric field was used to regulate and control pseudopodia-like extensions of a liquid metal-Al (LM-Al) droplet in certain directions. The results suggest that in certain electric fields, the LM-Al droplets tend to generate extensions perpendicular to the electric field; the underlying mechanism arises from the specific surface tension imbalance induced by the electric field. The influence of varying electric field intensity and Al content on the LM-Al transformations was also evaluated; the LM-Al droplets displayed specific and distinct behaviors according to each experimental configuration; this further proved the feasibility of using electric fields for controlling LM-Al transformations. The entire study provides a promising and practical method for control of LM amoeba-like transformations, which are valuable for further development of soft robots and devices.