Cargando…
Reactive intermediates in copanlisib metabolism identified by LC-MS/MS: phase I metabolic profiling
Copanlisib (CNB; Aliqopa™) is a novel, intravenous phosphoinositide 3-kinase inhibitor used to treat various solid and hematological malignancies. CNB was recently approved by the U.S. FDA to treat adults that relapsed after two preceding systemic therapies. Using LC-MS/MS, we screened for the in vi...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9060959/ https://www.ncbi.nlm.nih.gov/pubmed/35517257 http://dx.doi.org/10.1039/c8ra10322d |
_version_ | 1784698621232414720 |
---|---|
author | AlRabiah, Haitham Kadi, Adnan A. Attwa, Mohamed W. Abdelhameed, Ali S. Mostafa, Gamal A. E. |
author_facet | AlRabiah, Haitham Kadi, Adnan A. Attwa, Mohamed W. Abdelhameed, Ali S. Mostafa, Gamal A. E. |
author_sort | AlRabiah, Haitham |
collection | PubMed |
description | Copanlisib (CNB; Aliqopa™) is a novel, intravenous phosphoinositide 3-kinase inhibitor used to treat various solid and hematological malignancies. CNB was recently approved by the U.S. FDA to treat adults that relapsed after two preceding systemic therapies. Using LC-MS/MS, we screened for the in vitro metabolites of CNB formed in human liver microsomes (HLMs) and probed for the generation of reactive electrophiles using methoxyamine and potassium cyanide as nucleophiles to capture reactive electrophiles by forming stable adducts that are suitable for identification by LC-MS/MS. Seven CNB phase I metabolites generated by oxidation, hydroxylation, oxidative dealkylation, reduction, and N-oxidation were identified. In addition, four reactive electrophiles, 2 aldehydes and 2 iminium ions, were identified, and a prediction of the corresponding bioactivation mechanism is presented. The formation of reactive metabolites may be associated with the side effects reported for CNB. To our knowledge, this is the first report on the detailed structural characterization of reactive intermediates generated in CNB metabolism. |
format | Online Article Text |
id | pubmed-9060959 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90609592022-05-04 Reactive intermediates in copanlisib metabolism identified by LC-MS/MS: phase I metabolic profiling AlRabiah, Haitham Kadi, Adnan A. Attwa, Mohamed W. Abdelhameed, Ali S. Mostafa, Gamal A. E. RSC Adv Chemistry Copanlisib (CNB; Aliqopa™) is a novel, intravenous phosphoinositide 3-kinase inhibitor used to treat various solid and hematological malignancies. CNB was recently approved by the U.S. FDA to treat adults that relapsed after two preceding systemic therapies. Using LC-MS/MS, we screened for the in vitro metabolites of CNB formed in human liver microsomes (HLMs) and probed for the generation of reactive electrophiles using methoxyamine and potassium cyanide as nucleophiles to capture reactive electrophiles by forming stable adducts that are suitable for identification by LC-MS/MS. Seven CNB phase I metabolites generated by oxidation, hydroxylation, oxidative dealkylation, reduction, and N-oxidation were identified. In addition, four reactive electrophiles, 2 aldehydes and 2 iminium ions, were identified, and a prediction of the corresponding bioactivation mechanism is presented. The formation of reactive metabolites may be associated with the side effects reported for CNB. To our knowledge, this is the first report on the detailed structural characterization of reactive intermediates generated in CNB metabolism. The Royal Society of Chemistry 2019-02-21 /pmc/articles/PMC9060959/ /pubmed/35517257 http://dx.doi.org/10.1039/c8ra10322d Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry AlRabiah, Haitham Kadi, Adnan A. Attwa, Mohamed W. Abdelhameed, Ali S. Mostafa, Gamal A. E. Reactive intermediates in copanlisib metabolism identified by LC-MS/MS: phase I metabolic profiling |
title | Reactive intermediates in copanlisib metabolism identified by LC-MS/MS: phase I metabolic profiling |
title_full | Reactive intermediates in copanlisib metabolism identified by LC-MS/MS: phase I metabolic profiling |
title_fullStr | Reactive intermediates in copanlisib metabolism identified by LC-MS/MS: phase I metabolic profiling |
title_full_unstemmed | Reactive intermediates in copanlisib metabolism identified by LC-MS/MS: phase I metabolic profiling |
title_short | Reactive intermediates in copanlisib metabolism identified by LC-MS/MS: phase I metabolic profiling |
title_sort | reactive intermediates in copanlisib metabolism identified by lc-ms/ms: phase i metabolic profiling |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9060959/ https://www.ncbi.nlm.nih.gov/pubmed/35517257 http://dx.doi.org/10.1039/c8ra10322d |
work_keys_str_mv | AT alrabiahhaitham reactiveintermediatesincopanlisibmetabolismidentifiedbylcmsmsphaseimetabolicprofiling AT kadiadnana reactiveintermediatesincopanlisibmetabolismidentifiedbylcmsmsphaseimetabolicprofiling AT attwamohamedw reactiveintermediatesincopanlisibmetabolismidentifiedbylcmsmsphaseimetabolicprofiling AT abdelhameedalis reactiveintermediatesincopanlisibmetabolismidentifiedbylcmsmsphaseimetabolicprofiling AT mostafagamalae reactiveintermediatesincopanlisibmetabolismidentifiedbylcmsmsphaseimetabolicprofiling |